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Some properties of the Godel universe are demonstrated, such as closed timelike
lines, and new coordinates are found. The scalar and peutrino field equations are
solved and the eigenvalue spectra are calculated. The scalar field has a discrete
spectrum, but the neutrino field has, in addition, a continuous spectrum due to
the coupling of neutrino spin and rotation in the Godel universe. The mode
solutions do not form a complete set for either the scalar or neutrino fields;
therefore, a quantum field theory cannot be constructed in the usual manner.

1. INTRODUCTION

Conference 82 was held in honor of P. A. M. Dirac. His work lies at the
foundation of much of physics, most notably quantum mechanics and, in
particular, the Dirac equation. He has interests in the structure of the
universe through his large numbers hypothesis. The following work is an
application of field theory and quantum mechanics in the Gédel universe
and is close to the research interests of Dirac.

The effects of -the global properties of a space-time on quantized fields
is a topic of current interest. More particularly, one would like to know
whether (and how) the global structure of the universe affects local experi-
ments. Global properties such as the expansion of the universe are observed
through the red shift of distant objects; however, more truly local effects are
of concern here. An example is the discreteness of the cigenvalue spectrum
for a system of finite size (e.g., the standard undergraduate quantum
mechanics problem of the particle in a box).

A simple space-time exhibiting a number of unusual properties is the
Godel universe. The Godel universe exhibits properties associated with the

!Presented at the Dirac Symposium, Loyola University, New Orleans, May 1981.
2NAS/NRC Resident Research Associate.
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rotation of the universe. It is homogeneous in space and time and is filled
with a perfect fluid, just as the Friedman cosmologies. However, the
presence of rotation has two major effects’: the space-time metric is not
parity invariant, and closed timelike lines are present; ie., causality is
violated. This latter property is commonly associated with rotation (e.g.,
Tipler, 1974). Some questions which arise are: How does the presence of
closed timelike lines affect the propagation of a quantum field in spacetime?
What effects does the lack of parity invariance have on the possible states
for the parity noninvariant neutrino field? However, though the real uni-
verse undoubtedly possesses some small amount of rotation, closed timelike
lines are unlikely to be present. Unfortunately, these two effects cannot be
separated for a simple space-time such as the Godel universe.

Section 2 is concerned with the symmetries of the Godel metnic, as
expressed by the Killing vectors. These are used in deriving a new set of
coordinates for the Godel metric, with which a major part of the subsequent
calculations are carried out. Using a variational method, geodesics for the
Go6del metric are found in Section 3. The absence of closed timelike
geodesics (i.e., absence of causality violation for an unaccelerated observer)
is demonstrated, and in Section 4 the presence of closed timelike curves
(with accelerations) is demonstrated with an example.

The scalar wave equation is solved in Section 5. This is done in the new
coordinates and in Godel's original coordinates. Explicit formulas for the
eigenmodes and frequencies are given, and the frequency spectrum is
plotted. In Section 6 the neutrino field is investigated, with similar results.
The neutrino field is found to possess both continuous and discrete parts to
its eigenvalue spectrum, whereas the scalar field has only discrete eigenval-
ues.

The problem of formulating a classical field theory is discussed in
Section 7. In Section 8 the orthogonality and completeness of the mode
solutions are discussed. Section 9 addresses the problem of quantizing the
fields. Because of the absence of a complete Cauchy surface in the Godel
universe and the incompleteness of the mode solutions to the scalar and
neutrino field equations over a three-dimensional surface, second quantiza-
tion of the scalar and neutrino fields cannot be carried out in the usual
manner. Section 10 summarizes the results obtained in this investigation.

Previous work includes that of Hiscock (1978), who has solved the
scalar wave equation in the Godel metric and has calculated the eigenvalue
spectrum, and of Mashoon (1975), who has considered the propagation of
electromagnetic waves and demonstrated the coupling between the helicity
of the photon and the rotation of the Godel universe.

3These and other properties are summarized in Gddel (1949).
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2. GROUP STRUCTURE OF THE GODEL UNIVERSE

In this section, a new set of coordinates is derived for the Gédel metric.
First, the symmetries of the metric are found by solving for the Killing
vector fields of the Godel metric. The commutation relations of the Killing
vectors are then examined to find the structure coefficients of the symmetry
group of the Gddel metric. Linear combinations of the Killing vectors are
formed to simplify the commutation relations and group structure coeffi-
cients. A mutually commuting subset of these new Killing vectors is used to
define a new set of coordinates for the Godel metric.

We start by using the metric in Godel’s original coordinates (Ryan and
Shepley, 1975):

ds> =[dx® +exp(x") dx2]* — (dx")?
—exp(2x')(dx?)? /2—(dx?)’ (1)

An isometry is a transformation which leaves a space-time metric invariant.
A Killing vector field describes an infinitesimal isometry; i.e., the metric is
left invariant by sliding the space-time along a Killing vector field. The
Gaodel metric possesses the five Killing vector fields:

7%=(1,0,0,0), nt=(0,1,~x%,0)
74=1(0,0,1,0), 7%4=(0,0,0,1)
nt = (=2exp(— x'), 2%, exp(—2x") ~ (x2)? /2,0) )
These are found by solving Killing’s equation:
L(8,)=mn,,+mn,,=0 (3)

where L, is the Lie derivative with respect to the vector p. Equation (3)
specifies that the derivatives of the metric functions g,, are zero in the
direction of a Killing vector.

The Killing vectors of equations (2) satisfy the following commutation
relations*:;

[nosm]=I[ns,m]=0, i=0,1,2,3,4 (4a)
[711,71412714, [771,7?2]_—'772, [712,71412711 (4b)

*For any two vector fields p,o the Lie derivative of ¢ with respect to p is given by
L(a)=[p,0].
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If one defines new Killing vectors® by

ﬁz‘_‘("lz‘*'"h)/\/z’ ﬁ4:("12—714)/\5, n=m (5)

then the commutation relations (4b) of the subspace spanned by 4,, 7,, and
74 have the form

[, ;] = Cie (6)

The C,.’; are the structure constants for the symmetry group of the Gddel
metric. They have the form

C|42:C14:C412=1’ Ci,;: _C}/f (7

others zero.

These are the same as the structure constants for the Lorentz group of
space-time rotations (i.e., Lorentz boosts and ordinary rotations) in a
{2+ 1)-dimensional Minkowski space. This is not surprising since the isot-
ropy group of a point must be a subgroup of the homogeneous Lorentz
group (Ryan and Shepley, 1975). The isotropy group of a point P is the set
of isometries which leave P fixed. Transformations which have a fixed point
are rotations. The only Killing vector of the set (2) which has a fixed point is
n4, and only at x>=0, x' approaches infinity. None of the new Killing
vectors 7; [equation (5)] has a fixed point. However, one can construct
rotations with finite fixed points by simple linear combinations of the
Killing vectors (2). For example, n, +2%,— 7, +31, /2 vanishes on the
2-plane x! =0, x2 =1. Killing vectors describe only infinitesimal isometries.
Thus, there is no reason why the path of a point undergoing a macroscopic
rotation should close to form a circle. In general, a rotational isometry will
take a point along a corkscrewlike path. The five Killing vectors of equation
(2) express the entire set of symmetries of the Godel metric, including
homogeneity in space and time. Only three of these are simple translations,
in the coordinates of equation (1).

According to equation (4), only three of the five Killing vectors
mutually commute. By choosing three mutually commuting Killing vector
fields to form coordinate lines, one can obtain metric coefficients which
depend functionally only on the fourth coordinate. The first three coordi-
nates correspond to symmetries of the Godel universe. 5,, 7, 75 are chosen
here as the three Killing vectors with which to construct new coordinates.

*In general, linear combinations of Killing vectors are also Killing vectors only if the
coefficients are constants.
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They then have the following form in the new coordinates:
7%=(1,0,0,0, 7¢=(0,1,0,0), W=(0,0,0,1)  (8)
The new coordinates are labeled by
x*=(t,¢,r,x) €]

so that 7, corresponds to translation along the mew coordinate ¢, for
example.

To find the coordinate transformation of new from old coordinates we
take

x1=x (10)

since they correspond to the same Killing vector [by equations (8) and (2)].
Any vector p has components in two coordinate systems, x* and x*, related
by the transformation

p* = (dx*/dx" )’ (11)
With the known forms of 7, 7, and 7, 77, one obtains, from equation (11),
1=dx%dt, 0=dx!/dt, 0=dx?/dt (12a)
0=dx%d¢, 1=dx'/d¢, —x*=dx?*/d¢ (12b)

This allows one to write the coordinate transformation as
X=t+M(r), x'=¢+n(r), x?=rexp[—¢—h(r)] (13)
with M(r) and h(r) arbitrary functions. The x? dependence on r has been
chosen to be rexp(— x') for simplicity. Since the r coordinate can still
undergo a scale change, it forms the arbitrary function for x? in equation

(13). One can specify M(r) and h(r) by imposing conditions on the form of
the metric in the new coordinates. The metric is, from equations (1) and (13)

ds*={dt+ M'dr +[— rd¢ + (1 — rk’)dr] }2
—(do+hdr): —rdo+ (k' —1/r)dr]* /2—(dx)’ (1)

with "=d /dr. Choosing M’'=rh’—1 eliminates the cross term in dtdr.
Furthermore, setting #’'=r/(2+ r?) eliminates the d¢ dr cross term. With
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these simplifications the metric is

ds?=(dt —rde¢ ) —(2+r2)(de)’ /72— (dr)’ /(2+ r?)—(dx)* (15)

The metric (15) can be put in a more natural form by transforming the
r coordinate to @ by a scale change:

r =12 sinh@ (16)
This yields the final form of the new metric® which we will use:
ds> = (d — (2 sinh8ds)’ —cost?(de)? —(d0)* ~(dx)  (17)
The coordinate transformation is, in summary
x%=1t—tanh, x‘=¢—l/(\/§cosh0) (18a)
x2={2sinhfexp(~x'), x3=x (1.8b)

The two Killing vectors other than those specified in equation (8) [i.e., 7,
and n, of equation (2)] are

n’z‘zexp(x‘)[l/(\/fcoshW), —sinh0/(2cosh30),1/(\/5cosh0),0]

n4 =exp(— x‘)[l/(ﬁcoshﬂ),sinhﬂ(ﬁ— 1/(2cosh0)),cosh0/ﬁ,’0]
(19)

in the new coordinates ¢z, ¢, 8, and x. The preceding x! is understood to be a
function of ¢ and 8, as given in equation (18).

3. GEODESICS

In this section we study the geodesics of the Godel universe. A geodesic
is a path (either spacelike, timelike, or null) for which the tangent vector U
to the path obeys U’ Ut =aU" U U# is the derivative of U in the
direction of U. Thus, along the path of a geodesic the tangent vector is
transported parallel to itself. The path is specified by four differentiable
functions of some parameter. By transforming to a new parameter, one can

$This form was pointed out to me by W. G. Unruh.
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always put the geodesic equation in the form U;"‘BUB =0. Such a parameter
is referred to as an affine parameter. For timelke (or spacelike) geodesics,
an affine parameter is proportional to proper time (or distance). Regardless
of parametrization, timelike and null geodesics correspond to the force-free
motion of massive and massless particles, respectively.

A segment of a geodesic (in general, entire geodesics have no end-
points) is an extremal path between its end points. All geodesic segments,
and thus all geodesics, can be found by solving the variational problem:

O=8des (20)

with s an affine parameter (proper time or distance for timelike or spacelike
geodesics). The Langrangian L is proportional to the square of the proper
distance along the curve as a function of the parameter s:

L=g,(dx*/ds)(dx"/ds)

Extremizing this can be shown to be equivalent to extremizing the proper
distance. For the Godel metric of equation (17), L is given by

L=(dt/ds |2 sinh8dg/ds)’ —cost? 6(dg/ds)’
—(d6/ds)" — (dx /dx)* (21)

Lagrange’s equations for ¢, ¢, and x (with - =d /ds) yield the constants of
the motion:

A={—{2sinh8¢, B=x, C=/2sinhf4+cosh®0$  (22)

Substituting into equation (17) yields (for timelike geodesics) an equa-
tion for 8(s):

. 2
1=A?—§2—(C—/2sinh64)" /cost’d — B (23)
If one defines the constants D and E and the function y by

D=A*+B*+1, E=24C*/D+A4*-B*—-C*~1 (24a)

y=sinhf —24C/D (24)
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then one can rewrite (23) as
y*+Dy*=E (25)

For null geodesics the left-hand side of equation (23) is zero. This resul ts in
equations (24) and (25) being valid but with D and E both defined without
the “1” in them. Differentiation of equation (3.6) with respect to s yields

29(5+ Dy) =0 (26)

Thus, y is either a constant along a geodesic (y=E/D) or y obeys the
simple harmonic oscillator equation’:

y=(E/D)"*sin(D'/*s + a) 27
From equation (22), ¢ and ¢ satisfy the first-order equations:

f=—A+[24(1+CY/D)+ 2 Cy) /(2 +2/2 ACy/D +1 +24°CY/ D]
(28a)

=[c(1-24%/D) 2 4y) /(y* +2/2 4Cy/D +1+24°C?/D?|  (28b)

A, B, and C are arbitrary subject to E >0 by equation (25). The explicit
form of any geodesic is given by equations (24), (21), and a direct integra-
tion® of equation (28) with respect to s. In the case in which y is constant, ¢
and ¢ are constants.

We now demonstrate the absence of closed timelike geodesics® in the
maximal manifold. For constant y, we could regard ¢ or ¢ as periodic
coordinates to obtain closed timelike geodesics. However, to obtain a
maximal manifold any such periodicities in the coordinates have been
unwrapped From the preceding equation (28), for periodic y one has that
0, £, and ¢ are periodic. However, ¢ cannot be periodic unless A4 is zero by
equation (28). Equation (24) then gives a negative value for E, which is not
allowable. Since the preceding variational approach gives all the geodesics,
this implies that there are no closed timelike geodesics.

"Consider negative E: no solution to equation (25) exists. Thus, values of A, B, and C which
result in negative E are not allowed.

8The result is rather complicated and is not given here.

9Chandrasekhar and Wright (1961) have shown that no closed timelike geodesics exist.
WHiscock (1978) uses a periodic coordinate ¢ to give an example of a closed timelike curve.
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4. CLOSED TIMELIKE LINES

The existence of closed timelike lines is examined in this section. The x
coordinate can be ignored, so we consider only the three-space with coordi-
nates ¢, 8, ¢ and metric

ds?=(di 2 sinh8d)’ ~cosh§(de)’ —(do)’ (29)

Ryan and Shepley (1975) give an explicit form for closed timelike curves in
the coordinates of Godel, i.e., those of equation (1):

x%=A[sin(z)—sin(z)cos(z) /2],  x'= — Bcos(z)
x*=—4sin(z), x*= (30)

The constants A and B need to be chosen properly and z is unbounded. In
the coordinates here, ¢, ¢, 8, and x, this takes the form

t= Asin(z)[1—cos(z) /2]
—{1+2/[ 4sin(z)exp(— Bcos(z))]} ~/?
¢ = — Beos(z)+ [ A%sin*(z) exp[ —2Bcos(z)] +2] /2
sinhf = — Asin(z)exp[ — Bcos(z)] /2, x=0 (31)

The nature of the light cones (for which ds?=0) is examined to
illustrate the nature of the closed timelike lines.!" Write - =d /dA for some
suitable affine parameter A. Then one has

0={*>—2/2 sinh 67 + (sinh?6 — 1)$* — 2 (32)

The infinitesimal light cones will be described by the surface defined by
equation (32) in the tangent space. The only variable in equation (32) is 4,
so one can illustrate the behavior of these surfaces for various #. This is
done in Figure 1. The light cones open up as one moves away from 4 =0,
and rotate counterclockwise for increasing 6, clockwise for decreasing 4. The
positive ¢ direction is always inside the forward light cone, and the negative ¢
direction is always inside the backward light cone. At sinh§ =1, the positive

''Hawking and Ellis (1973) use another set of coordinates to illustrate the light cones, nuli
geodesics, and an example of a closed timelike curve,
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sinhf=-4

sinh0=[Z

sinhd=4

Fig. 1. Light cones in the Godel universe.

¢ direction is tangent to the backward light cone, and the negative ¢
direction is tangent to the forward light cone. For sinhf# = —1 the situation
is reversed. For |sinhf| > 1, the ¢ direction is inside the double light cone.

With the light-cone structure established, one can construct a closed
timelike curve as follows, for example (this is illustrated by Figure 2):

(1) Move along positive § and ¢ in the 8-t plane past sinhf =1 where
the edge of the light cone dips below the constant ¢ plane (say, umtil
sinh 6 = 4).

(2) Change direction to negative ¢ (still inside the forward light cone)
and move in the t—¢ plane at sinhf = 4.

(3) At negative ¢, large negative ¢ change direction to be in the 8 —¢
plane and move along negative § and ¢ until almost at sinh@ =1 (for
|sinh@] <1, the forward light cone no longer tips below the constant ¢
plane).

(4) Move along positive ¢ and ¢, negative § back to the origin.

The tangent vector to the previously described path has remained
inside the forward light cone for the entire closed path, and thus the path is
a valid closed timelike curve. One can smooth out the corners to get
reasonable accelerations. However, as we have shown, no closed timelike
lines exist which are also geodesics.

As opposed to the case for geodesics, there are no general methods
which give all the closed timelike lines. They must be found by trial and
error. Because of this, we have only given an example of one closed timelike
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Fig. 2. An example of a closed timelike curve in the Godel universe.

1
sinh6=1

e

713

line (clearly, though, there are an infinite number of similar characters to
the one illustrated in Figure 2). We leave the topic of paths of classical point
particles and, in the remaining sections, study the behavior of fields in the
Godel universe, starting with the scalar field.

5. SCALAR FIELD

In this section, solutions for the scalar field equation in the Godel
metric are found. This is done in the coordinates derived in Section 2 and in
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Godel’s original coordinates of equation (1). In Section 7 the question of
constructing a classical field theory is addressed. Since the Godel metric
possesses no complete spacelike surfaces, which are desired as initial data
surfaces for the fields, one is faced with making an arbitrary choice of
constant “time” surfaces. Use of two different choices, i.e., two coordinate
systems, helps illustrate the effect of this arbitrariness.

For the purposes of finding mode solutions and eigenfrequencies, one
set of coordinates suffices. Fortuitously, in Godel coordinates, the number
of parameters involved can be reduced by one via a mode-dependent
transformation. As a result, the solutions in this case yield an exact formula
for the mode frequencies. However, the features of the mode functions and
frequency spectrum are the same for both sets of coordinates.

The minimally coupled massless scalar field ¢ satisfies the covariant
Klein—-Gordon equation:

(3.,8),,=0 or (1//—¢)(/~52"%,),=0 (33)

where the semicolon means covariant derivative and the comma means
partial derivative. g is the determinant of the matrix of metric coefficients
8.»- In the coordinates of equation (17), this becomes

(1—2tank?8) o —2y2 (sinh8/cost? ) ,

-(I/COShzo)é_n_&’,zz_taﬂhe‘i’,z_&’,n:0 (34)

g is —cosh?§ in these coordinates. One can define simultaneous eigenmodes
by exploiting the isometries of the Godel metric through the Killing vectors
7,. This is achieved by imposing periodicity of the modes along directions
given by a set of commuting Killing vector fields:

L ¢=—iad, i=0,1,3 (35)

Here L, stands for the Lie derivative with respect to the vector p. The «; are
the momenta of the field ¢ in the directions #,. In equation (35) we have
chosen the same Killing vectors and thus the same symmetries of the Godel
metric that were used in Section 2. Since three of the coordinates corre-
spond directly to the Killing vectors used in equation (35), the Lie deriva-
tives reduce to partial derivatives. One is then led directly to write the

separated form of the scalar field, equation (37).
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Separation of variables in equation (34) yields the following equation
in §:

[(Ztanh2 8 —1)a2 +2/2 (sinh6/cost? § ) aga, +(1 /cosh? 6)a? + a%}
X¢—¢, —tanhf ¢, =0 (36)
with
o(a;; x*) = exp(—iaygt —iayd —iasx)d(a;; 6) (37)

In terms of the variable y = sinh#, this can be rewritten as

d/dy[(1+ y?) dé/dy)
+[ (o3 +a?)+(203 — o ~22 gy ) /(1 + »¥e=0  (38)

Examination of the singular points of this equation reveals that it is one
form of the hypergeometric equation. Equation (38) can be rewritten in the
form

&u”+2y/(l+y2)€>’+[—k1/(l+y2)+(k2 —k3Y)/(1 +)’2)2]<$’:0
(39)
with "= d /dy and
ki=a}+a}, k,=203—a}, k;=22em (40)

The solution (Morse and Feschbach, 1953) of equation (39) can be written
in terms of the Riemann symbol as

i —i o0 y
¢=P{A TR (41)
AI “! V’

with A, A’; u, w’; », v’ being the indices at the regular singular points at i,
— i, and infinity, respectively. These pairs are given by the roots of

N=(k,—ksi)/4, p?=(ky+ kyi) /4, vi=k, (42)
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One can express ¢ in terms of the hypergeometric function, which is the
analytic solution about z = 0 of the hypergeometric equation:

2(z—=1)F"(z)+[(a+b+1)z—c]| F'(z)+abF(z)=0 (43)
with "= d /dx. F can also be written in terms of the Riemann symbol:
0 1 ® z
F(a,b,c;z)=P 0 0 a (44)
I—c c¢c—a—b b

To put the equation for ¢, equation (39), in the form of that for F, equation
(43), both the dependent and independent variable must be transformed.
Applying the required transformations, one finds ¢ in terms of F:

¢=AF(A+pu+v,1—v—N—p , A=XN+1;(1+iy)/2)
+BF(N+u+v,1—v—A—p N=A+1;(1+ip)/2) (45

with 4 and B arbitrary constants. This is the general solution of equation
(39) about the singular point y =i. The general solution about the singular
point y = —i is
d=AF(p+A+v,1—y—p' =N, p—p+1;(1—-iy)/2)
+BF(W+A+y,1—v—p— N, —p+1;(1—iy)/2) (46)
The radius of convergence of both these solutions is 2. The solution about
the point at infinity is
$=A(y+i)'/(y—i)TFr+pt N 1=A—v—p,

y—v'+1;2/(1+ip))+ B(y+i)* /(y—i)**"
XF(v'+p+A1=A—v—p,v—v+1;2/(1+iy)) (47)

From equation (42), »'= —» is real since k£, > 0. Thus, one must have either
A or B zero in equation (47) (depending on whether one chooses v or »” to
be negative) so that ¢ does not diverge. Together, the equations (43), (46),
and (47) allow one to find ¢ anywhere in the complex 4 plane, in particular
for real 4.
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The general self-adjoint differential equation for the eigenvalue prob-
lem!? over an interval of y is

[p(& ()] +[a(r)+Ar(»)](y) =0 (48)

with ‘=d/dy and p(y)r(y) positive over the interval. The eigenvalue
problem consists of finding all functions ¢,(y) which solve equation (48)
and satisfy the boundary conditions, and of finding the cigenvalues A, that
A must take for each of the functions ¢,. It can be shown that there are an
infinite number of eigenvalues, ranging from some minimum value to
positive infinity (Morse and Feschbach, 1953, Chapter 6). One can compare
equation (38) or (39) with equation (48). One sees that either — k, or + &,
can be regarded as the eigenvalue A. The remaining &, act as parameters:

A=—k, r=I1, k,,k;parameters (48a)

A=+k,, r=1/(1+y?), k,,k,parameters (48b)

The question of orthogonality and completeness of the eigenfunctions
is considered here. First we consider only the # dependence of the mode
solutions. Orthogonality and completeness of the eigenfunctions must be
discussed in terms of an inner product. For the self-adjoint differential
equation (48) the inner product of two solutions ¢, and ¢, is normally
defined as

(31,82) = [dy $1(»)d»)r(») (492)

Orthogonality of &a, and J)Z is expressed by (é,, 652) = (. Completeness of the
eigenfunction set means that the difference between an arbitrary function
f(y) and its expansion g, (y) in terms of eigenfunctions ¢,( )

gn(y)= § Ca.(y)

n=1

with C, constants, can be made arbitrarily small; ie. (f—g,, f— &)
approaches 0 as m approaches infinity. For equation (48), completeness

"2Suitable boundary conditions must be imposed at the end points of the interval.
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can be expressed by the relation

S 5.5 0)r(3) =8y~ ) (49b)

n=1

where the sum is over all eigenfunctions.

The eigenfunctions for cases (48a) or (48b) would form a complete set
if the eigenvalue A were free to assume arbitrary values. However, from
equation (40) one has —k,= —(aj+a2). Thus, k, cannot take on all
eigenvalues required. In fact, since the eigenvalues of equation (48) range
from some minimum value to positive infinity, — k, takes on only a finite
subset of the infinite range of eigenvalues. k, can yield all eigenvalues above
— af by varying" a,. If the minimum eigenvalue for given &, and a; is less
than —af, k, cannot take on the first few eigenvalues. However, both
choices (48a) and (48b) must lead to the same results for the full set of
solutions for ¢ and the associated allowable values for a,, @,, and «;. Later
we will find it advantageous to use the choice equation (48a).

We first consider the case (48b) with k, as eigenvalue. For the self-
adjoint differential equation (39), the eigenfunctions can be shown to be
orthogonal (suitably normalized):

fd}’é’(al,a;, k,, )’)‘5*(5% a3, k3, }’)/(1+y2) :8kz,k'2 (502)
or in terms of §:
[d0d(ar a3, kz,0)8* (o1, 05, k3, 8) /cosh8 =8, ., (50b)

If, in addition, k, takes on all possible eigenvalues in the spectrum of the
self-adjoint differential operator (with boundary conditions), one has the
completeness relation:

Eé‘(al,ab kys )’)‘2’*(0‘1’“3’ kz,}")/(H‘)’z) =8(y—y) (51a)

ki
or in terms of 8:

2&’(“]1“37 k2:9)“i’*(al’a39 kzyg’)/COShezs(e_Bl) (5 ]b)

ky

3Take o, and a; as free parameters. Then «y is determined by the required eigenvalues of k,.
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For the choice that — k| is eigenvalue, equation (48a), the orthogonal-
ity relation is

fd)"}(“has’_ku}’)‘;5*(0‘1,0‘3’_k;,)’)zskz,k; (52a)
In terms of 4 this becomes:
[d6d(ay, @y, —k,,0)8*(cy, 05, — ey, ) coshd =3, . (52b)

If — k, could take on all eigenvalues, then the completeness relation would
be

2‘5(0‘1’0‘3’ _kn)’)‘?’*(an"‘aa —ky, y') =8(y— ) (533)
ky

or in terms of 6

Soay, a5, —ky,0)0*(ay, a3, —k,,8")coshd =6(6—6")  (53b)
ky

To determine the character of the eigenvalue spectrum, consider the
form of equation (36) as § approaches infinity:

d%/d6*+d¢/d0 —k,$=0, O->xo0 (54)
This has asymptotic solutions:

é=Aexp[—(a+1/2)8]+ Bexp[(a—1/2)0], 8- +o0
¢=Cexp[—(a—1/2)0]+ Dexp[(a+1/2)8], 8- —x (55)

with a= +(1/4+k,)!/% In equations (55) C andD are functions of the
arbitrary constants A and B, found by solving the full equation (39). When
the boundary conditions are applied, one requires B and C to be zero [see
also equation (47)] since one has a=1/2 for all values of «, and «,. This
will occur for only isolated values of the constants — k|, k,, and k; so that
the eigenvalue spectrum is discrete.

It turns out that the mode solutions and eigenvalue spectrum are
expressed more neatly by using the original coordinates of Godel, equation
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(1)." Substituting for g*” and g [ = —exp(2x') /2], one obtains the partial
differential equation

‘;’,00 + <E’,u + ‘Z’,l + ‘;’,33 —4exp(— xl)‘i’,oz +2exp(-2x1)<;>’22 =0 (56)
To separate variables in equation (56) we write ¢ as
ézf(x‘)exp[i(kzxz+k3x3—-wx°)] (57)

Then f satisfies

d*/(dx')? +dffdx' — (w? + k2 +dexp(— x' )wk,
+2kZexp(—2x"))f=0 (58)
For k, =0 we can write f as
f(x')=Aexp(px') (59)
Then p must satisfy
)1/2

pr+p—(wr+k2)=0 or p=—(1/2)=(w2+k2+1/4

For f to converge for —oo < x'< +co, p must vanish, i.e.,

w=k;=0 (60)
when k, = 0.
For k, nonzero define the variable z by
2=2/Z|ky|exp(~ x') (61)

This is not a transformation to new coordinates since k, depends on the
mode under consideration [see equation (57)]. In terms of z the equation
(58) for f becomes

d*f/dz? +[—1/4— 2 mw/z —(w?+k3) /%] f=0 (62)
with m defined by m =k, /| k,| = = 1. By performing the transformation of

14The solution of the scalar field equation in Godel’s coordinates has also been considered by
Hiscock (1978), with similar results.
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variables we have reduced the number of parameters from 3 to 2 (k, no
longer appears). The equation (62) has a regular singularity at z=0 and an
irregular singularity at infinity. We put equation (62) in the form given in
the Appendix by equation (A.1). The values of &, &, A, and A’ are then given
by

k=172, a=-—mw/2
— 2 2 1/2 ’— 2 2 172
A=1/24+(wi+k2+1/4)7%,  N=1/2—(w2+ki+1/4)7° (63)

Since we have A’ <0, convergent solutions are (see Appendix)

f(z)=Aexp(—kz)z*F(a,c,2kz) (64)
with
c=1+A-N=1+2(w2+k2+1/4)"?
a=c/2—a/k=c/2+ {2 mw (65)
where a= —n, n=0,1,2,... When a is a negative integer, the confluent

hypergeometric function F reduces to the generalized Laguerre polynomials
L~ Y(2kz) (Abramnowitz and Stegun, 1964)'°:

F(—n,c,2kz) =n'LEV(2kz) /(c), (66)

The eigenfrequencies are calculated from equation (65): —n=c/2
+y2 mw. Inverting this formula results in an expression for w:

w=—m{Z(n+1/2)+[(n+1/2)* +k3 +1/4] "} (67)

With the definition of m in equation (62) we conclude the following:

(A) w>0 for k,<0 and w<0 for k,>0. With equation (57) this
implies that positive frequency (w>0) waves travel in the negative x2
direction and negative frequency waves travel in the positive x? direction.

(B) One has {w,|>V2, equality for n=0, k;=0. Thus there is a
minimum frequency for scalar waves in the Godel universe unless the field
does not depend on x? (i.e., k, is zero). However, in this latter case w and k,
are also zero, so no wave solution exists.

5See equation (A.3b) for the definition of (c),.
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(C) For fixed k,,w is discrete. This is equivalent to the statement made
earlier for the scalar field solutions using the coordinates of equation (17).

(D) There is a straightforward generalization to the massive or confor-
mally invariant cases. The field equation then takes the form

8", ,, +46=0 (68)

with 4=m? for a scalar field of mass m, or A= R /6 for the conformally
invariant scalar field. For the Godel metric equation (1), the Ricci scalar R
has the value R = +1. With the additional term in equation (68), equation
(56) is modified by + A4¢ on the left-hand side. This has the effect of
replacing w?-+k} by w2+k3+ A4 in formulas (58) through (67). The
minimum frequency is now larger: |w| > (1,/2)/2 +(1/2+ 4)/? instead of
(B) above. This reduces to |w|>y2 for 4=0.

With an explicit formula for the eigenfrequencies w, we plot the
spectrum or dispersion relation in Figure 3. The w versus k; curves are
rectangular hyperbolas. This is best seen by rewriting equation (67) as

[w+m2(n+1/2)] =k2=(n+1/2*+1/4 (69)
The asymptotes of the hyperbolas are centered in the w,k; plane at

(k3,w)=[0, — my2 (n+1/2)]. The point on each hyperbola closest to the
k, axis is given by

Wik =0)= = m{[2 (n+1/2)+[(n+1/2) +1/4] /)
~—m(2 +1)(n+1/2)

Equation (62) is in the self-adjoint form of equation (48), and we have
imposed regular boundary condition at z=0 and z approaches infinity.
Thus we can address the question of completeness of the solutions (64). The
explicit form of these solutions is given by

f(z) = Aexp(—z/2)2** 'L (z) (70)
with
p=(wr+ki+1/4)"?

These functions can be shown to be orthogonal but incomplete under the
inner product (f, g)= [f(z)g*(z)r(z)dz as follows. Consider the equation
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N

A\

=1

n=2
Fig. 3. Spectrum for the scalar field in the Gédel universe.

(62) for f with — w as the eigenvalue and, by equation (48),
r(z)=+y2m/z=exp(x')/(2k,) (71)

as the weighting function. w? + k2 =p? —1/4 is then the parameter which
one holds constant.'® For each value of u? —1 /4 one can solve equation (62)

'$One can vary &, freely so long as we are considering the z dependence independently of the
x3 dependence.
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for the eigenfunctions f and the eigenvalues w. Thus orthogonality of the
eigenfunctions holds:

ff*(xl, k,, k3,w)f(x', k,, k3,w’)r(z)dz =|4|? (72)

However, |w| has an upper bound: 0 <w?<p?—1/4. This demon-
strates incompleteness for the set of solutions f since a complete set would
have — w ranging to infinity.

In the next section we consider the solutions to the neutrino field
equations in the Godel universe.

6. THE NEUTRINO FIELD

The neutrino field equations are solved in two sets of coordinates. The
motivation again is to help understand the problems of constructing a field
theory, discussed in the next section.

The generalized Dirac equation for curved space-time is (Brill and
Wheeler, 1957)

— iy v my =0 (73)

where v, =9, — I, is the covariant spinor derivative. The spin connections
are given by

L= —(/9(l, 1+ C vy —v/¥) /2 (74)

The [i, kj] are the Christoffel symbols of the first kind'" and the C,,, are
defined by

3y = Cyy/ (75)
To satisfy the anticommutation relations
Yy +yiyi=2g" (76)
the y matrices are chosen to have the form
y*=7°+2tanh8y', y?=7?

y'=7'/coshd, ¥y =7’ an

17See equation (97), or any standard text on relativity, e.g., Anderson (1967).
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The ¥* are the flat space Dirac matrices:

b g el ) i

!

From the preceding equations one obtains the following expressions for the
spin connections I';:

I,=7'9%/2/2, I, =cosh87°7%/2/2
L,=-39/22, ©L,=0 (19)

For the solutions of the Dirac equation (73), simultaneous eigenmodes
can be defined by imposing periodicity of the modes along a set of
commuting Killing vector fields:

Ly=—iay, i=0,1,3 (80)

The Killing vectors are given by equation (8), in the coordinates of equation
(9). For the neutrino field one has, in addition to setting m = 0 in the above,
the restriction to left-handedness:

(1—iy5)y=0 with y5=(? (’)) (81)
(1—iy®) is the operator which projects out the right-handed component of
the wave function . The neutrino field in this case simplifies to a two-
component wave function:

") (g) with éz(%‘) (82)

73
With equations (77), (79), and (80), the Dirac equation for neutrinos
separates in the coordinates of the metric (17). This yields the following
equation in 8:
[(7°+/2 tanh7' ) (= i) + 7'(— it,) /fcosh 8 + 77d /d6
+73(—ia;) + 7°7'7%/2/2 +tanh67%/2] ¢( e, 6) = 0 (83)

To obtain equation (83) the neutrino field ¥ has been written in the form,
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with separated variables,
¢(ai,x“)=exp(—ia0t~ia1¢—ia3x)¢(ai,0) (84)

This was possible because of the relation between the three Killing vectors
used in equation (80) and the coordinates ¢, ¢, and x.

One then obtains coupled equations for the component functions of the
neutrino field, ¢, and ¢,:

[4/d6+tanh(6/2)+ (@, +2 aysinh8) /coshd] &,
(a3+1/_/4 0‘0) =0 (85a)
[4/d8 +tanh(8,/2)— (o, + /2 asinhf) /cosh 6] 6,

+( oy +12 /4= a0} $, =0 (85b)

These are equivalent to the second-order differential equations:
d?%,/d8* +tanh0d¢, /df
+{a0 (a3+\/_/4) (1/cosh* )
x‘[1/2+sinh2(0/4)—(a, +ﬁaosinh20) +( oy sinh — fao)]} =0,

+:=1, —:=2 (86)

In terms of the variable y =sinh#, equation (86) takes the form
(d/dy)[(1+ y*)d, /]
+{—[(a3+ﬁ/4)2+ag—1/4]

+[Zag—alz+1/4t\/§-a0—y(Zﬁaoaltal)]/(l-l-yz)}J)‘.:
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This is written in self-adjoint form for comparison with the general self-
adjoint differential equation, given in equation (48).

One can compare equation (87) with the corresponding equation for
the scalar field case, equation (38). The differences are due to the coupling
of the neutrino spin to the metric, as expressed by the presence of the spin
connection in the Dirac equation. Equations (87) can be written in the same
form as equation (39), but with the k; given by

2
k12a3+(“3+%\5) —1 ky=2dd—al+ix2q,
ky=22ap, e, +:i=2, —:i=I (88)

The discussion regarding writing ¢, in terms of the hypergeometric
function and on orthogonality and completeness of the eigenfunctions from
equation (39) to equation (53) applies also to the neutrino field, with
equation (40) replaced by equation (88). One cannot keep k, and &, fixed if
k, is chosen as eigenvalue without changing a,, a;, and a,. If — &, is chosen
as eigenvalue, the discussion of completeness of the neutrino field mode
solutions on a three-dimensional surface in the Godel universe is meaning-
ful, as discussed in Section 8. Again, as with the scalar field, the allowable
solutions form a set of measure zero in the complete set of solutions. There
are now two differential equations and two sets of eigenfunctions related by
the first-order equations (85).

To determine the nature of the eigenvalue spectrum, we consider the
form of the asymptotic solutions. However, the boundary conditions must
be dealt with differently than for the scalar field case. The neutrino field is a
spinor, whereas we require a true scalar quantity, which is independent of
any spinor basis. The spinor basis may diverge or vanish at infinity, so that
the vanishing or divergence of the spinor field components may be due
merely to poor choice of basis. The scalar quantities ¥y, ¥} are required to
be finite. ¢ =y* §° is the Dirac adjoint. M* is an orthonormal tetrad'®
(i=0,1,2,3) parallel transported to infinity along #-coordinate lines accord-
ing to

dX;/ds + Tiy(dx®/ds)A\f =0 (89)

with x*=(4, B,4,C); A, B,C constants. T* 4 is the connection for the

'8A tetrad is a set of four vector fields which relate the coordinates to a locally inertial frame at
each point. See, ¢.g., Weinberg (1972).
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metric.!” The tetrad is chosen so that at § = 0 it has the components
Ab=¢F atf=0 (90)

The solution to equation (89) with the condition (90) yields the tetrad for all
8 as

AL = (cosh(a/ﬁ) —ﬁtanhesinh((WE),—sinh(a//z‘)/cosha,o,o)

A= (-sinh( 0/‘/5)+ﬁtanhﬁcosh(0/\/5),—cosh(ﬁ/\/f)/coshﬁ,0,0)
AL =(0,0,1,0)
A% =(0,0,0,1) (91)

The corresponding scalar quantities of interest are

$r*yNS, = cosh(8//2 ) (816, + $16,) +sinh(0//2 ) (318, +$19))

PPN, = —sinh( 842 )($16, + b3, ) —cosh(0/12 ) ($16, + $36,)
(92)

Py =i( 19, — $39)

YY" YR, = — o1, + $1d,

These are required to be finite as § approaches plus or minus infinity.

The asymptotic form of the equations for ¢, and é,, equations (85a)
and (85b), give the values of ¢, and ¢, as 8 approaches infinity. The
requirement of finiteness of the scalars in equation (92) for all values of § is
equivalent to

exp( + 0/,/5) |¢;]> finite as 6 — = co, respectively (93)

The asymptotic forms of the solutions to equation (87), or equivalently to
equation (39), are given, with the appropriate k;, by equation (57). This
gives the requirement

B=0 and C=0 fora>(1-1/y2)/2 (94)

Yna space-time without torsion, such as we consider here, the connections reduce to the
Christoffel symbols of the second kind. These are given by, e.g., Anderson (1967).
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with = +(1/4+k,)}/2. This will be the case for only isolated values of
— ky (with k,, k; fixed). However, for a<(1—1/v¥2)/2 no such restriction
is implied by equation (93). Thus the spectrum of eigenvalues for k, is
continuous for 0<a<(1—1/y2)/2 and discrete for a>(1—1/y2) /2.

Again, as with the scalar field, solution of the neutrino field equations
in Godel’s coordinates, equation (1), gives neater results (i.e., explicit mode
frequencies) than in the coordinates of equation (17). The Dirac equation is
given by equations (73)~(76). In Goddel coordinates we can take

=292 v'=9, i =fZep(-x)ih =9 (95)

where §' are the flat space Dirac matrices given by equation (78). With these
v', one calculates the Cj, as

C4=—1  all others zero (96a)
or, equivalently, one finds for the C,
Con=—exp(x'), G, = —exp(2x')/2  otherszero (96b)

The Christoffel symbols [i, kj] will be given here explicitly for illustration.
They are given by derivatives of the metric functions 8y’

[i, ki1 = (dg, /dx’+ dg,, /dx* — dg, ; /dx') /2 (97)
giving
[1,02] = —[2,01] = —[0,12] = —exp(x') /2
[1,22] = ~[2,12] = —exp(2x')/2 all others zero (98)

Then one can calculate the spin connections I, to be given by

I‘0=}7‘72/2ﬁ, I=o0, PzzexP(xl)7l72/4\/§a ;=0 (%99)

For neutrinos one has the condition on the allowed helicity, equation
(81). Thus one can write  as in equation (82). The neutrino equation is now
written out explicitly. Since x°, x2, and x> do not appear explicitly, we
directly separate variables:

¢, =expli(kyx?+kyx® —wx®)] £, i=1,2 (100)
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The neutrino equation then separates to give first-order coupled equations
for f, and f,:

—i(w—ky =2 /4) fy+[d/dx' +3+ 2 (w+ kyexp(—x"))] =0
(101)
—i(wHky+\2 /4) f+[d/ax' + 5= 2 (wH kyexp(= x))] =0
These combine to give the second-order differential equations
a%f, /(') +3df fdx + {w? = (ks + 2 /4)°
+ﬁ—2[w+k2exp(—xl)]2.t\/Z—kzexp(-—x’)}fi=0 (102)
with + for f, and — for f,.
For the case k, =0 we can write f = exp( px') since the coefficients in

the differential equation (102) are independent of x'. Then p satisfies the
relation

p=—1/a=|w+(ky +2 /a7 (103)

with f,, f, proportional to exp( p, x'),exp( p_x"). The solutions diverge as
x' approaches plus infinity or minus infinity unless p is zero. This occurs
over a narrow range of w and k;:

wit(ky+2/4) =1/16  fork,=0 (104)

Contrast this with the scalar field case, equation (62), where the k, =0 case
gives no wave solution. This is in accord with the discussions based on the
solutions in the ¢, ¢,8, x coordinates. There, a continuous spectrum for
low-frequency modes [after equation (94)] was found for the neutrino field
but not for the scalar field. One finds from equation (101) the ratio of f; and

b
fi=if(Zw+1)/(w—k;— 2 /4) = const (105)
For k, nonzero define the variable z by

z=|k,|exp(—x') (106)
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This differs from the scalar field z, equation (63), by a factor of 2v2. The
relations between the x!' and z derivatives are given by

d/dx'= —zd/dz, d*/(dx')’ =:4d%/d:*+zd/dz  (107)
Equation (102) in terms of z becomes
2%d%, a2 +(z2/2)df, fdz + | =222 +m( 25 —aw)z +a] ;=0 (108)
with a=1/16—w? —(k; +/2 /4)%; s= + for f,,s = — for f,.
Equation (108) is put in the standard form for a second-order linear
differential equation with one regular and one irregular singular point?’:
d*f/dz*+ p(z2)dfdz +q(z)f=0 (109)
with
p=(=A=N)/z, gq=—k>+2a/z2+AN /z*

Comparison of equation (109) with equation (108) yields the values of k, A,
A, and «a:

and
2a= m(ﬁs—4w) (110)
The general solution of equation (109) about z =0 is given by
f=Aexp(—kz)2* F(1+A—=N)/2—a/k, 1+ A — X', 2kz)
+ Bexp(—kz)2VF((1—A+X)/2—a/k,1— A+ N,2kz) (111)

F(a, c, z) is the confluent hypergeometric function [see equation (A.3)].

DSee Appendix; also Morse and Feschbach (1953), pp. 550 ff.
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Requiring convergence of the scalars 1[77"4/}\"” is equivalent to conver-
gence of f; and f, for 0<z<oo. The arguments are similar to those
presented for the solutions in 7, ¢, 8, x coordinates which resulted in the
requirement equation (93) for <Z>1 and i)z.

For z approaching zero, 4 and B can be nongero in equation (111)
without destroying convergence if A’> 0 [see equation (A.5a)]. Convergence
of fin equation (111) for z approaching infinity, additionally, results in the
requirements?!

1/2
B:O:a/k=n+%+[w2+(k3+\/f/4)2]/ (112a)
for A’>0or M’<0

A=0:a/k=n+1/2-[w2+(k3+\/-2—/4)2]]/2 (112b)

for A’>0. The Appendix demonstrates why both alternatives result in
convergence for A’ > 0, whereas only equation (112a) results in convergence
for M’<0. a and k are given by equations (112a), (112b), and (110). This
yields the possible frequencies of convergent solutions f; and f;:

w=[s—2m(n+1/D]/f2 =m{[s—2m(n+1/2)]" /4

i 1/2
+(ke; +12 /4) }
with
—forA’>0 or AXN<O [case(112a)]

113
+ forA’>0 [case (112b)] (113)

We consider the case of the minus sign in equation (113) first, which
holds for all A’. For the case k, >0 (m = =*1), the frequencies for f; and f,
are given by

w= —{ﬁn,+[n}+(k3+ﬁ/4)2]'/2} for f,
(114)
w= —{\/2—(n2+1)+[(n2+1)2+(k3+\/5/4)2]1/2] for f,

21— N+ X 7= — m is identically satisfied and for A’>>0, 1+ A’— A %= — m also always holds.
See also equations (A.6).
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For k, <0 (m= —1), one has
w:\/.z_(nl+1)+[(nl+1)2+(k3+\/5/4)2]1/2 for 7,

w:ﬁn2+[n§+(k3+\/5/4)2]]/2 for f, (115)

Here n, and n, are the integers required in equations (112) for the
convergence of f, and £, respectively. There is no a priori reason why n, and
n, should be the same.

Since any solution pair f;, f, have the same frequencies w, k,, and k;,
equations (114) and (115) imply the relation

n=n,+m (116)

m is the sign of k,, as before. The preceding relation is derived in the
Appendix together with the relation between f, and f,.

The case A’>0 allows the other sign in equation (113). However,
together with equation (116), one can show that the minimum frequency in
equation (113) violates the condition A'>0; i.e., |W|n =V2 —1 gives A/,
=1/4—|w| 1, <0. Thus, only 4 is nonzero in equation (111) for all w, &,
and k,.

The explicit form of the z eigenfunctions can now be given:

fiz)=4, CXP(‘_‘?Z)ZALS.C,_I)(“Z)
Hiz)= Azexp(—Zz)z"LffZ" D(4z) (117)

The ratio of 4, and 4, is given in equations (A.13); A is given by equation
(110), and ¢ by

c-—l=)\—7\'=2[w2+(k3+\/5/4)2]l/2

The neutrino field ¢ is then given by equations (82) and (100), with z given
by equation (106) and w by equation (114) or equation (115), depending on
m, the sign of k;.

To further examine the dispersion relations, equations (114) and (115),
we cast them in the form

(wtmfzn)' —(ky+2/8) =n2,  n=1,23.. (118
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This is a rectangular hyperbola with asymptotes given by

w+mf2n==(k,+/2 /4) (119)

The “center” (crossing point of the asymptotes) has coordinates (k;, w)=
(—v2 /4, — my2 n), which shift progressively away from the k, axis as n
increases. The dispersion relation, or spectrum, is plotted in Figures 4a and
4b. Equations (114) and (115) include only the branch of the hyperbola
directed away from the k; axis. These are the A’<<0 modes. The A">0

1 m=~1
nq=
n2=

N //
\\ — 1+w/_2-
N\ Ve
N 4
AN
N 7
/\ “ﬁ
k3
k2=0
m=+1
n1=1
n2=0

A

Fig. 4. (a) Spectrum for the neutrino field in the Godel universe: near the k,,w origin,
illustrating lack of A’> 0 modes. }
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€

%

Fig. 4. (b) Spectrum for the neutrino field in the Gédel universe: large-scale features.

modes are excluded as argued in leading up to equation (117). This is
indicated in Figure 4a by the branches of the hyperbolas in dotted lines. The
hyperbolas for w versus k; have asymptotes which recede from the k, axis
as — my2 n, but the closest point on each hyperbola recedes as — m(y/2 + 1)n.
This is seen directly from equation (119) with k, +v2 /4 = 0. Also shown in
Figure 4 are the k, =0 modes. This is the circle near the origin of the
(%5, w) plane.

We now summarize the main results obtained via the solution of the
neutrino field equations in the x° x!, x2, x3 coordinates.
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(A) One has w>0 for k, <0 and w<0 for k, >0, so that positive
frequency waves travel in the negative x? direction and vice versa. This
result was also found for the scalar field.

(B) There is a minimum frequency for neutrino waves (with k, 5 Q) in
the Godel universe: |w] >1+v2.

(C) For fixed k4, w is discrete, except for neutrino waves with no x?
dependence (k, = 0).

One can show that the solutions f, and f, do not form a complete set
for functions of z in the interval 0 to infinity. To address the question of
completeness we write equation (109) in the self-adjoint form {with p(z)=

1/2z):
(d/dz) (2" %dx /dz)+ 2"/ %q(z)f=0 (120)
with
g(z)=—2+2a/z+a/z?

a and a are given by equations (108) and (110). In equation (120) we take a,
or equivalently w, as the eigenvalue for fixed values of the parameter a. But
by equation (108) for a, one has

w2<1/16—a

With this restriction, for any given value of a,w has an upper limit. This is
contrary to the requirement for a complete set of eigenfunctions, i.e., that
the eigenvalue range to plus infinity. We see thus that the eigenfunctions of
equation (117) do not form a complete set. This is in agreement with the
results found for the functions <f>,. [discussed after equation (88)].

7. CONSTRUCTION OF A FIELD THEORY IN THE GODEL
METRIC

Now we wish to consider the question of constructing a field theory for
the scalar and neutrino fields in the Godel metric. There are two parts to the
approach followed here. First, the classical field theory is considered. This
includes primarily a discussion of the initial-value problem in the Godel
metric. Secondly, the quantization of the fields is briefly discussed. This is
not considered in detail owing to the problems encountered with construct-
ing a classical field theory.

So far we have found sets of mode solutions to the scalar and neutrino
field equations (Sections 5 and 6, respectively). The equations were sep-
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arated and solved in both the Godel (x° x!, x?, x?) coordinates and the
new coordinates (¢, ¢, 8, x) constructed in Section 2. The equations for the 4
and x' (or z) dependence were put into self-adjoint form and solved. For
both neutrino and scalar fields the §-dependent functions (or z-dependent
functions) were found to be incomplete as a basic set for expanding
arbitrary functions of @ (or z). Completeness is defined in terms of an inner
product, as was described in the discussion following equations (48a) and
(48Db).

We need to consider the solutions of the scalar and neutrino equations
over the whole of the Godel space-time. There exists an abstract vector
space which includes all functions in the Godel universe which are solutions
of the scalar field equation (and a separate space for all solutions of the
neutrino field equation). The two sets of coordinates, (x°, x', x2, x*) and
(t,¢,8, x), cover the entire Godel space-time, so the vector spaces for
solutions in either set of coordinates are the same. The mode solutions
found here [e.g., ¢ of equation (37) or of equation (57), for the scalar field]
form a basis for a vector space of solutions (in this case, for the scalar field
equation). Does the space spanned by the mode solutions encompass all
solutions to the field equation? This can be restated in the form: can any
solution be expanded in terms of the mode solutions? An inner product is
required to decide when two functions are equal, as described earlier.

Normally, the preceding question regarding completeness has a
straightforward affirmative answer. This situation occurs when the Cauchy
initial-value problem is well defined in a space-time. It is not for the Godel
universe. The Cauchy problem is well defined when a space-time can be
foliated into a set of complete spacelike surfaces (conventionally labeled as
constant ¢ surfaces). The field equation (here we consider the massless scalar
field as an example) [1¢ =0 is separated into an operator V2 on the
spacelike surfaces and an operator d*/d¢? for the time dependence. Writing
¢ proportional to exp(— iwt), the spatial equation is

vip+w2e=0 (121)

This is Helmholtz’s equation, and the solutions to this (for all w?) form a
complete set for expanding all functions on the spacelike surface. v 2 here is
symbolic for the covariant Laplace operator. The covariant operator is used
so that the surfaces can have any curvature as long as they remain spacelike.
The statement about completeness also implies that any function on a
spacelike surface forms a valid set of initial data for a solution to the field
equation.

The inner product under which the solutions to the field equations
form a complete set is defined by an integral of the conserved current J*
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over a spacelike surface:
($1,82)=(i/2) [dZ (= g)"* 1 (122)
I

This inner product is particularly useful since it is conserved; i.e., the inner
product of two solutions does not depend on which surface is considered in
equation (122). For the scalar field, the current operator J* is

T80, 8,) = g*[(3.81) %, — 61(8,8,)] (123a)

For the neutrino field (this holds also for the massive Dirac fiéld) the
current is given by

J“(‘I’h%):‘pﬂn% (123b)

Applied to the scalar field case, the inner product, equation (122), becormes

Gué)=/2) [ &x(=g)"g™[(887)8, - 81(a:)] (129)

= const

What alternate inner products exist? One can use
(81,8.) = [$192(—5)" "’ (125)

This is a generalization from the inner product used for one variable,
equation (49a2). The inner product in equation (125) is not conserved.
Another possibility, perhaps useful when the Cauchy problem is not well
defined, is

[or6:(—g)"2d*

The mode solutions are then not a complete basis, since any function
(including all which do not satisfy the field equations), over the full
space-time can be considered. However, if the space is Euclideanized (i.e., ¢
goes to it), then the solutions to the massive scalar field equation: O¢ +
m?p = 0 for all values of m form a complete set. Compare this with equation
(121); the Euclideanized [J is now a Laplace operator. The question of what
forms a valid and useful inner product for the space of solutions has not
received enough attention in the past. It deserves much more attention, but
only a brief discussion is given here.
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What can go wrong with the standard classical field theory? A simple
example involving an incorrect choice of surface for defining the inner
product (122) is now given. Consider the massive scalar field in flat space
with coordinates (¢, x, y, z). Define the inner product as in equation (124)
but over z = const surfaces. The mode solutions are given by

exp(— iwt + ik, x + ik, y + ik,z) (126a)
with
wl—kZ—kl—k}-m?=0 (126b)

According to equation (126b), the k’s can have any value, whereas w is
restricted to |w| > m. Thus, on a constant 7 surface, the modes (126a) form a
complete set of functions of x, y, and z. But on a constant z surface, the
modes (126a) are incomplete for functions of ¢, x, and y owing to lack of the
low-frequency exp(— iwt) functions. This problem arises because a constant
z surface is not spacelike; this is responsible for the plus sign of w?
occurring in equation (126b).

In the Godel metric there are no complete spacelike surfaces, so the
problems of the last paragraph are expected to occur. In Sections 5 and 6,
the incompleteness of the mode solutions for the 6 (or the x') dependence
was demonstrated for both scalar and neutrino fields. This is easily ex-
tended to incompleteness over constant ¢ (or x°) surfaces under either inner
product equation (124) or (125) for the scalar field or equation (122)
for the neutrino field. It was shown that the mode solutions form a set of
measure zero in the total set of basic functions on a constant ¢ (or x!)
surface. This is in contrast to the incompleteness of the modes (126a) over a
constant z surface in flat space for which only a few basic functions (those
for |w| <m) were missing.

The modes (126a) still form a complete basis for all solutions to the
scalar field equation for mass m in flat space. For the Godel metric, we do
not know whether the mode solutions form a complete basis for the
solutions of the field equation (either scalar or neutrino). This question is
one which should be looked into, but is not considered here. Another
question, not addressed here either, is whether the mode solutions in the
coordinates (¢, ¢, 8, x) span the same vector space as those in the coordi-
nates (x°, x!, x2, x).

The next section discusses the lack of completeness of the mode
solutions over three-dimensional surfaces in the Gédel metric. If the Cauchy



740 Leahy

problem were well defined for the Godel universe, completeness would be
essential. Since it is not, completeness in the standard sense is not expected
to hold.

8. ORTHOGONALITY AND COMPLETENESS OF THE
MODE SOLUTIONS

Here we consider orthogonality and completeness of the full four-
dimensional, dependent mode solutions for the scalar field, equation (37).
The discussion is dependent on the choice of an inner product for the
solutions to the scalar field equation. The lack of completeness is not
surprising in light of what has been said in Section 7.

The scalar field modes in (¢, ¢, d, x) coordinates are examined first.
They are given by equation (37), with ¢(8) given by equations (45), (46), or
(47) for the appropriate values of y =sinhf#. We first consider k, as
eigenvalue [alternative (48b)] for the # (or y) equation. In this case k, and .,
are parameters. The relation between the k’s and the a’s, equation (40),
shows that k, cannot be varied freely (as it must be to “find” its eigenvalues
for fixed k, and k,) without changing a, or «,. In turn, constant k, implies
that both a4 and a; change. Constant k, means that «, also changes. This is
unsatisfactory since to discuss completeness we need to have «, and a5 fixed
so that the completeness in the variables ¢ and x is undisturbed [see
equation (37)]. The ¢ dependence is not of concern since we can define the
inner product in the standard manner as over a f=const surface, as in
equation (124) or equation (125). We seek completeness over a constant ¢
surface in order to decompose any initial data into field modes. The Godel
metric presents an additional problem here since a constant ¢ surface is not
spacelike everywhere nor do there exist any complete spacelike surfaces.

The other choice of — k| as eigenvalue is now considered. With — k, as
eigenvalue and k,, k; fixed parameters for equation (39), the relations (40)
leave only one choice. a; and «, must be fixed and a, allowed to vary to
change —k,. For consistency with completeness defined for an inner
product on a set of three-dimensional surfaces in the Godel metric (recall
there are no complete spacelike surfaces available), one must take x = const
as these surfaces. Then variation of — 4, (and a,) does not disturb the
completeness in ¢ and ¢ variables. This unusual situation in which a, takes
on the status of energy (normally one would give a, this role) and x the
status of a pseudo-time-coordinate is forced on us and is a result of the
rotation of the Godel universe.
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For the full four-dimensional space-time we then generalize the relation
(52b) to obtain, for orthogonality,?

fdﬂdtdrpexp[— ip(a, —ay)—ix(ay— o) —it( ey — ap)]
X ¢(ay, oy, —k;,0)¢*(al, a, — k},8) cosh

= CXP[_ ix(a3 - ag)] sa,,a’,aim3|,|a’3|8(xo, abskl.k’l (127)
If — k, would cover the full range of eigenvalues, the completeness relation

Z ‘;5(“0, ap, —kl,(’)@*(ao,al, —ky, 0’)

ag, a, k;

X exp| —iag(t —1")—iey($—¢')] =8(8 —0)8(1 —1")8($— ¢)
(128)

would be valid. Since completeness is defined on constant x surfaces, x = x’
is required and implied in equation (127). As mentioned previously, — k,
will not take on all eigenvalues for any values of «, or «,. Thus, the
completeness relation, equation (128), will not hold.

One can determine the missing eigenfunctions which prevent the solu-
tions to the scalar field equation from forming a complete set. We use
— k, [alternative (48a)] as eigenvalue to discuss the missing eigenfunctions.
In this case we had defined an inner product over constant x surfaces
instead of constant ¢ surfaces and treated a5 as the “frequency” of our
solutions to be quantized. Then, by equation (40), k, varies as a? with k,
and k&, fixed [as well as the ¢ and ¢ dependence through a; and q, in
equation (37)]. There are missing eigenfunctions since — k, has a possible
range of minus infinity to — a3, whereas the eigenvalues required range
from a minimum value to plus infinity. We see that the high-frequency
[exp(—ia;x), a; large] solutions are the ones that are missing. This is a
strange result since x is the ignorable coordinate in the Godel metric. We
note also here that for fixed k, and k,, — k, takes on only a finite number
of the infinite range of eigenvalues. Thus, the set of allowed solutions of the
scalar wave equation is of measure zero in the complete set of eigenfunc-
tions.

2The 84,1, 1a3) is present, but redundant since (aq, a;, — k) = (g, &], — k) implies a3 = > aj.
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The arguments for the eigenmode solutions in (¢, ¢, 8, x) coordinates
for the neutrino field equation parallel this. The counterpart of equation
(127) has 8/, + 122}, |ay+1 /22 instead of §, | ., on the right-hand side.
This is due to the difference between equation (40) and equation (88) for &,
(orthogonality of the ¢- and t-dependent parts of ¢ gives k, = k] and
ay = ag).

One can define an inner product in a way similar to the stand ard
manner by an integral of the conserved current J* over a constant ¢ surface.
This surface is not spacelike everywhere, in particular for |sinhf|>1. One
writes the inner product as in equation (124). The inner product (124) is
different from that in equation (127) or its counterpart for k, as eigenvalue
which arise from equation (49a). Under this inner product one can shiow
that the eigenmodes of equation (37) with different «,, «;, or a; are
orthogonal:

<(5(a0’ a, &35 x“)’ E)(ai)’ (X;, ag’ xl‘)> = suo,aasa‘,ajaag,ag (129)

¢ needs a different normalization than for the other inner product, equation
(49a). Here the values of o} are dictated by the eigenvalues for — k|, giving
two possible signs: a; = =(k, — a3)!/2

We demonstrate here, explicitly, the orthogonality of the mode solu-
tions to the scalar field equation in the coordinates (x°, x',x2, x3). In
Section 5 we found all solutions to the scalar field equation which are
regular for x? approaching plus or minus infinity (z approaching plus
infinity or zero). From equations (57) and (70) the scalar field modes have
the form

b(x*,w, ky, ky) = Aexp[i{ kyx? + kyx® — wx®)] exp(— 2 /2) 2+ LW z)
with
=22 |ky|exp(—x'), p=(wi+k2+1/4)" (130)
and w given by equation (67).
The orthogonality of the f(x') eigenfunctions is given by equation (72).

Orthogonality of the normal modes of equation (130) is then easily demon-
strated to hold:

f&*(x“, ky, ks, w)o(x*, ky, ki, w)r(z) d’x

=(27)"|41%,,,8(k, — k3)8(k; — k3) (131)
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In equation (131) the weighting function r is given by
H(2)==2m/z= = mexp(x') /2Ky = ~(— £)"*(2k) (132)

This is directly proportional to (— g)'/2, so that orthogonality of the scalar
field modes is assured under the inner product of equation (125).

We now define an alternate inner product by equation (124),, with the
integration taken over a constant x° surface. The J° component of the
current operator applied to two normal modes, equation (123a), gives

T($1,8:) =[—i(w+w)—2exp(—x")i(k, +K3)] 616,  (133)
Thus, the integral in equation (124) becomes
(f1,8:) = [exp(x') dx' dxdx’/ 2
X[(w+w)/2+2exp(~x")(ky + K5) /2] 18,
= (@7’ 8(k, — k3)8(ky — k3) fexp(x') dx!

X [(w+w’)/2+26xp(—x‘)k2] A(x'w, kg, ky)
X f(x' W', ky, ks) (134)

However, from the differential equation for f, equation (58), one has
exp(—x')(d/dx") exp(x")df/dx']
=[w2+k32+4exp(—x')wk2+2k§exp(—-2x’)]f (135)
From equation (135) one obtains the following relation:
fr(x' W', by, ey )(d /dx! Y [exp(x ) dfy (' w, Ky, k) fdx!]
— fy(d/dx")[exp(x")df /dx']

= [w’2 — w2 +dexp(— x' )k, (w — w)] frfexp(x!)
(136)
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The left-hand side of equation (136) vanishes upon integrating by parts and
applying boundary conditions. Thus, the right-hand side must vanish when
integrated. But this is just the integrand of equation (134) times w'— w. This
means that for w’# w, the right-hand side of (134) must vanish.

Thus with proper normalization for ¢, the inner product, equation
(124), has the form

(‘1’1"52> =8(k,— k’2)8(k3 - k;)(sw,w’

for ¢, and ¢, normal modes. The discrete Kronecker delta in w is used since
the w’s are discrete, corresponding to different values of » in equation (67).
The orthogonality of the neutrino modes can be shown similarly with inner
product given by equations (122) and (123b).

9. QUANTIZATION OF THE SCALAR AND NEUTRINO FIELDS

Here a brief discussion will be given on the quantization of a field in
general. Then the problems associated with attempting to quantize in the
Godel universe are mentioned. As pointed out in Section 7, even classical
field theory in the Godel universe has its problems, so what is said here
regarding the quantized field is rather incomplete.

The quantized field is represented by the field operator. The field
operator can be expanded as a sum of positive frequency modes tirmes
annihilation operators plus negative frequency modes times creation opera-
tors.?? The annihilation and creation operators satisfy commutation rela-
tions for the scalar field [see equation (142)] or anticommutation relations
for the neutrino field.

The momentum canonically conjugate to the field operator @ is defined
via the Langrangian L:

7=8L/8(d®/dt) (137)
For the scalar field the conjugate momentum is

7=(—g)" g%®*, (138)
and for the neutrino field one has

r=i(—g)"*®7%° (139)

2More details are given in Bjorken and Drell (1965).
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The canonical commutation or anticommutation relations take the form, on
a constant time surface, in analogy with the classical Poisson brackets:

[®(x*), m(x*)]. =i83(x*—x*), t=t (140)

In equation (140) the — or + subscript indicates use of the commutator for
the scalar field or anticommutator for the neutrino field, respectively.

The preceding procedure can be shown to be consistent, i.e., starting
with the field operator expansion [e.g., equation (141)] and the commutation
relations for the operators [equation (142)], the left-hand side of equation
(140) is calculated to be i(— g)'/? times the sum over positive frequency
modes (label these by n) of wn[i,,(x")&:(x’“)—l- o*(x*)¢,(x*)]. This re-
duces, by the completeness relation for eigenfunctions, to the right-hand
side of equation (140). The reverse procedure of deriving the commutation
relations of the annihilation and creation operators from the field operator
expansion and equation (140) is also valid.

We now consider quantization of the scalar field in the Gédel metric.
Quantum field theory, in its present form, for any space-time has been
based on time evolution of the field from one complete spacelike surface to
another, i.e., the Cauchy initial-value problem. We wish to write the field
operator in terms of positive and negative frequency modes times annihila-
tion and creation operators, respectively. Since the Godel universe does not
have a foliation into complete spacelike surfaces on which to base a time
evolution, we are forced to other means in defining positive and negative
frequency. The following discussion is based on the solutions in
(x% x!, x2, x*) coordinates, since that is more straightforward.

For the scalar field operator ®, one can make the expansion

(x*) ZL <0dk2dk32 [a(kz, k3’wn);i>(k2’ kysW,; x*)
2 n

+b* (ky, ks, w,) 0% (kg kg, w5 x*)] (141)

in terms of the mode solutions of Section 5 to the scalar field equation.
These are explicitly given by equation (130). Equation (141) is the expansion
for the charged scalar field, rather than for the neutral scalar field which
would have a rather than b in the second line above. “b”-type and “a”-type
particles carry a scalar charge of opposite sign (see, e.g., Bjorken and Drell,

1965), but this is not essential to the discussion here. The creation and
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annihilation operators satisfy the commutation relations

[a(kz, ky,w,), a* (k5 k3, W;:)] =8(k, —k3)0(ks— kg)‘sw,,,w,’,
(142)
[B(ky, ky,w,), b™ (K5, ki, wy)] = 8(ky — k5)8(ky — k3)8, .

All other commutators vanish.
The following inner products (with w, > 0) yield the annihilation and
creation operators:

<&’(k2, ks w,; x"),‘I)(x“)) = a(kz, ky,w,)
(9* (kg k3 wy; x*), @(xF)y = b (ky, ks, w,) (143)

The field operator obeys the commutation relation

[®(x*),n(x*)] = —ifk <Odk2 dky Y, [w"cxp(x‘)/ﬁ+ﬁk2]

2 n

x[&’*(kz’ ky,w,; x”)‘?’(kp ks w,; x*7)

+<§>(k2,k3,w,,;x“)&b*(kz,kpwn;x'“)] (144)

where 7 is defined by equation (138). However, the failure of completeness
for the mode solutions to the scalar field equation in the Gédel metric
prevents the field commutator (144) from reducing to a delta function as in
equation (140). Note that the factor on the first line of equation (144), i.e.,
w,exp(x')+2k,, is identical to that appearing in equation (134) (setting
w=w’ and k, = k3}) for the inner product. Thus, equation (144) contains
the correct weighting function, and only the lack of a complete set of modes,
as previously demonstrated, prevents equation (144) from reducing to
equation (140).

The field operator commutator, equation (140), expresses the indepen-
dence of any two points on a spacelike surface (one can choose constant
time surfaces in any consistent fashion by change of coordinates); i.e., the
fields at x* and x*’ commute for x* # x*’. This is equivalent to freedom in
specifying initial data arbitrarily on a Cauchy surface. We do not have this
freedom for the Godel universe. How is this related to the presence of
closed timelike lines?
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One can construct the following function for the scalar wave equation:
H(x“;x‘“)‘—‘f dicy dicy 3, 6(ky, by, w,, x*)
k>0 ,,

X ¢*{(ky, ks, w,, x*")exp(x') /2k, (145)

This function is based on the modes of Section 5 in terms of the
(x% x!,x2, x%) coordinates. From an arbitrary function f(x*), one can
construct a solution to the scalar field equation:

= const

J)(x“’)=f dx'dx? dx® f(x*)H(x*; x*) (146)
X

For x°=x%, H is not equal to 83(x*—x*’) due to the failure of the
completeness relation, equation (49b), to hold. In this case we are using the
inner product of equation (125). r(z) is given by exp(x')/2k, from equa-
tion (71). Thus, ¢(x*) is not, in general, equal to f(x*) even on the initial
data x°=const surface. The closed timelike lines may be thought of as
linking any x° = const surface with itself. Any initial data must be self-con-
sistent with the field propagated along the closed timelike lines back to the
initial data surface. The absence of a global Cauchy surface for the Gadel
universe is directly related to the phenomenon of closed timelike lines.

The discussion regarding neutrino fields in this respect is analogous.
The analogous H function can be used to demonstrate the lack of freedom
of choice of initial data on a constant x° surface. The neutrino mode
solutions can be shown to be orthogonal under an inner product based on
the spinor current Yy*y. In addition, the “equal time” (i.e, x°=x%’
anticommutator of the neutrino field operators at x* and x*’ fails to give a
delta function in x* and x*/, in analogy to the scalar field case, equation
(144). Again, this is due to the incompleteness of the mode solutions over a
three-dimensional surface.

10. SUMMARY AND DISCUSSION

An investigation of the neutrino and scalar fields in the Godel universe
has been carried out. The question of the symmetries of the Gddel universe
was addressed first and was utilized to construct new coordinates (¢, ¢, 8, x).
The geodesics were found and the behavior of light cones examined to
illustrate the nature of the closed timelike lines in the Godel universe.
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The massless scalar and neutrino field equations were solved next. The
mode functions and eigenfrequencies were found. Positive frequency waves
travel in the negative x? direction and negative frequency waves in the
positive x? direction for both scalar and neutrino fields.

The massless scalar and neutrino fields are found to possess quantized
(discrete) energy and momenta. For the modes in (¢, ¢, 6, x) coordinates,
these are (ag, @), — k|, a3). One can regard «; as a function of «y, «;, and
— k;, this function being the dispersion relation (cf. w?=k2+k} + kZ for
plane waves in flat space-time). The discreteness or quantization of — &, is
associated with a potential in the § direction. The functional relation giving
the quantization depends on the solution of the hypergeometric equation
(39) subject to the proper boundary conditions, with k, given by equation
(40) for the scalar field and by equation (88) for the neutrino field.

The modes in (x° x!, x2, x*) coordinates were expressed in terms of
generalized Laguerre polynomials by equation (130) for the scalar field and
equations (82), (100), and (117) for the neutrino field. The eigenfrequencies
were found explicitly as given by equation (67) for the scalar modes and
equations (114) and (115) for the neutrino modes, in both cases for k, 54 0.
For k, =0, equations (60) and (104) give the frequencies.

One might expect this discreteness of frequency purely from a consider-
ation of the geodesics for a classical particle: the motion in y [ =sinhé
—V2 AC/D, defined by equation (24b)] is that of a particle in a simple
harmonic oscillator potential [see equation (25)]. The discreteness would
thus occur for the momentum corresponding to the coordinate of the
periodic motion.

An unusual result is found for the neutrino field in the low-energy,
long-wavelength region [i.e., for a<(1—1/v2)/2, a=(1/4+k)"/?]. The
spin gravitation coupling effect becomes large enough to overcome the
effective potential. The continuous allowable range of energy and momenta
characteristic of an unbound particle is regained.

The neutrino is not invariant under the parity transformation (inver-
sion of spatial coordinates), whereas the scalar particle is. One would expect
any effects due to lack of inversion symmetry in the Gddel universe to show
up in the neutrino wave functions. Inversion of ¢ and x coordinates is
equivalent to the change in the wave function:

a to —ay, a;to —ay

The change of 8 to — @ is then determined by the differential equation (39)
using the preceding relation. For the scalar field, one finds from the
relations (40) that k|, k,, and k, y are unchanged, so that the wave function
is invariant under parity. However, the relations (88) show that k, and A5y



Scalar and Neutrino Fields in the Gédel Universe 749

change for the neutrino case so that the neutrino field is not invariant.
Neither is the neutrino current 1nvanant J“"xh"‘x[/ (x[/ being the Dirac
adjoint: ¥ =y $°) since the change in qb is not merely one of phase.

The solutions to the field equations (either scalar or neutrino) do not
form a complete set over a three-dimensional surface in the Goédel metric.
This is connected with the problem of constructing a field theory in a
space-time for which the Cauchy initial-value techniques are inapplicable.
More work is required, but it is not clear whether it makes sense to
construct a field theory in such a space-time, without drastically altering the
standard procedure.

Despite the foregoing problems, a preliminary discussion of quantizing
such a field was given. The purpose of this was to point out ‘the major
shortcomings of the approach used. The interpretation of quantum mecha-
nics in a universe with closed timelike lines has its problems, over and above
the problems associated with causality violation in a classical space-time
(which include the failure of Cauchy techniques). They are clearly an area of
great interest, but it is believed that such a discussion is beyond the scope of

The second quantization procedure here is, of necessity, incomplete. A
field operator expression [equation (141)] and commutation relations [equa-
tions (142)] for the annihilation and creation operators were defined in the
usual manner. This led to the commutator (144) for the field operator at x*’
and its conjugate momentum at x*, which differs from the usual delta
function result, equation (140), because of the incompleteness of the mode
solutions to the scalar and neutrino field equations. The incompleteness, the
lack of a complete Cauchy surface, and the presence of closed timelike lines
all stem from the presence of rotation globally in the Go6del universe.

One suspects that standard quantum theory may not make much sense
in a space-time which violates causality such as the Godel universe. The
causality violation which occurs in a classical space-time might be always
removed by quantum effects. For example, it has been shown that the inner
horizon of the charged black hole is unstable (Matzner, Zamorano, and
Sandberg, 1979 and references therein). Perturbations in a test field outside
the black hole result in infinite energy densities at the inner horizon,
strongly indicating that it would be disrupted. The inner horizon is responsi-
ble for the causality-violating effects for the charged (and also for the
rotating) black hole.
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APPENDIX: SOME PROPERTIES OF THE CONFLUENT
HYPERGEOMETRIC FUNCTION

In this Appendix, features of the confluent hypergeometric function are
used in calculating some results needed for the solution of the scalar and
neutrino fields in the Godel metric.

Here we wish to consider the solution of the standard differential

equation with one regular singular point at z =0 and one irregular singular
point at infinity. We write the equation in the form

d*f/dz*+ p(z)df/dz + q(z)f=0 (A1)
with
p=(1=A=X)/z and g=—k?+2a/z+AN /22
The general solution of equation (A.1) about z =0 is given by
f(z)=Aexp(—kz)2*F((1+A=X)/2—a/k, 1+ X — N, 2kz)
+ Bexp(—kz)F((1=A+N)/2—a/k,1—-A+X,2kz) (A.2)
F(a,c, z) is the solution of the confluent hypergeometric equation which is

regular about z=0. The standard form of the confluent hypergeometric
equation is

zd*F/dz* +(c—~z)dF/dz — aF =0 (A .3a)
The solution F is given by

Fla,c,z)= éo(a)nz"/«c)"nz) (A3b)

with (x), defined by (x),=x(x+1)---(x+n—1),(x), =1. The confluent
hypergeometric function has the limits as z approaches zero or infinity
F(a,c,0)=1, c¢#-n (n=0,1,2...) (A4)
F(a,c,z)-exp(z)z°"T(c)/T(a) forz—oo

T'(x) is the gamma function (see, e.g., Abramnowitz and Stegun, 1964).
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The solution of equation (A.1) then is found to have the limits
f(z)»> Az*+BzY, z-0 (A.5a)

F(2) > Aexp(kz)z= 02N/ 2=«/kD(14 A = V) /T((1+ A = ') /2— a /k)

+ Bexp(kz)z~(-A=M/2-a/kD(1— A + \') /

XT(1=A+N)/2—a/k), Z 00 (A.5b)
The gamma function I'(x) has simple poles at the negative integers x = —n
(n=0,1,2...).

As z approaches zero [equation (A.5a)], f(z) will converge for any
values of A and B if A and A’ are greater than or equal to 0. However, if
either A or A’ is negative, the corresponding constant, 4 or B, must vanish.
For convergence as z approaches infinity, first consider the case when A and
A’ are both greater than or equal to 0. Then one can have convergence if the
gamma function in the denominator of equation (A.5b) has a pole (and the
gamma function in the numerator does not). The two possibilities are

A=0 and (1-A+N)/2—a/k=—n, 1=A+N#-m (A.6a)

B=0 and (1+A—-X)/2—a/k=—n, 1+A—XN#-m (A.6b)

If only one of A or A’ is negative, say A’, then one requires B=0 for
convergence as z approaches 0, so only the second possibility, equation
(A.6b), is possible.

The pext item we consider is obtaining the relation between the
functions f| and f, which describe the neutrino field through equations (100)
and (82). The differential equations for f, and f, were given in equation
(108), and the general solution to equation (108) was given in equation
(111). For A’< 0, according to equation (112a), one has

f,=Aexp(— kz)z*F(a,, c,2kz), i=1,2 (A7)
fi and £, differ only in 4 and a. The z derivative of f}, f, is given by
df./dz = A,exp(— kz)zM(— k + N /z)F,+ dF, /dz] (A.8)

We wish to use the first-order coupled differential equations for £, and f, to
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derive the relation equation (116). The first-order coupled equations, equa-
tions (101), in the variable z are given by

—i[w—(ky+\2 /4)| fi+]—2d/dz+1/4+ 2 (w+ mz)] =0
—i[w+ (ks +2 /8)| fo+[— 2d /dz+1/4— 2 (w+ mz)] £, =0 (.9)
With the relation (A.8), these become
i(4,/4,)[w— (ks +/2 /4)] F,
= —z[dF, /dz + (N /2= k)R] +[1/4+ 2 (w+mz)| F,
= —zdF, /dz—[A=1/4—2w)—2(m+1)z|F,  (A.10a)

i( A, /4)|[w+ (ks +12 /)] F,
= —z[dF, /dz+ (A /2= k)F|]+[1/4= |2 (w+ mz)| F,
= —zdF, /dz~[(A=1/4+2w) + 2 (m+1)z]F,  (A.10b)

The confluent hypergeometric function satisfies the identities (Abramnowitz
and Stegun, 1964)

(c—a)F(a—1,c,2kz)=(c—a—2kz)F(a,c,2kz)+ zdF(a,c,2kz)/dz
(A.11a)
aF(a+1,c,2kz)=aF(a,c,2kz)+ zdF(a,c,2kz) /dz (A.11b)

a and c are the arguments of F as given by equations (111) and (110). For
k,>0 (m= +1), equations (A.10a) and (A.llb), as well as equations
(A.10b) and (A.11a), are identified with each other. For &, <0 (m= — 1),
equations (A.10a) and (A.11a), (A.10b) and (A.11b) are identified as being
the same in form. This results in the following relations between a and ¢ and
the parameters of equation (110):

m=+1l:c—a=(1+A=N\)/2+a/k=A+1/4+5/2— 2w
a=A+1/4—5/2+2w (A.12)

m=—]:c—a=)\+l/4—-s/2+ﬁw, a=}\+1/4+s/2—\/5w
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With this identification, the ratio 4, /A, for the solutions f; and f, of
equation (A.1) can be found. This ratio is derived using the preceding
identification of equations (A.10) and (A.11) for m= +1 or m= — 1, and
yields

A/, =i(N=1/4+2w) [ w+ (k2 /4)], m=+1
A /Ay =i(A=1/4=2w)/[w—(ks+2 /4)],  m=-1

(A.13)

Finally, directly from equations (A.12) one obtains the result relating the
arguments of the f; and £, functions:

a,=a,+1 form= —1 (A.14)

a=a,—1 form= +1

The convergence requirement on the functions f, and f, for z approaching
infinity [see equation (A.5b)] meant that the argument a of the confluent
hypergeometric function had to be a negative integer: a= —n. Thus,
equation (A.14) yields the desired relation between the quantum numbers n,
and n, for the f; and £, solutions:

n=n,+m, n,n,=0,1,2... (A.15)
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