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Some properties of the G/kid universe are demonstrated, such as dosed timelike 
lines, and new coordinates are found. The scalar and neutrino fidd equations are 
solved and the eigenvalue spectra are calculated. The scalar field has a discrete 
spectrum, but the neutrino field has, in addition, a continuous spectrum due to 
the coupling of neutrino spin and rotation in the GSdel universe. The mode 
solutions do not form a complete set for either the scalar or neutrino fields; 
therefore, a quantum field theory cannot be constructed in the usual manner. 

1. INTRODUCTION 

Conference 82 was held in honor of P. A. M. Dirac. His work lies at the 
foundation of much of physics, most notably quantum mechanics and, in 
particular, the Dirac equation. He has interests in the structure of the 
universe through his large numbers hypothesis. The following work is an 
application of field theory and quantum mechanics in the G0del universe 
and is close to the research interests of Dirac. 

The effects of-the global properties of a space-time on quantized fields 
is a topic of current interest. More particularly, one would like to know 
whether (and how) the global structure of the universe affects local experi- 
ments. Global properties such as the expansion of the universe are observed 
through the red shift of distant objects; however, more truly local effects are 
of concern here. An example is the discreteness of the eigenvalue spectrum 
for a system of finite size (e.g., the standard undergraduate quantum 
mechanics problem of the particle in a box). 

A simple space-time exhibiting a number of unusual properties is the 
G/~lel universe. The Gtdel universe exhibits properties associated with the 

t Presented at the Dirac Symposium, Loyola University, New Orleans, May 1981. 
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rotation of the universe. It is homogeneous in space and time and is filled 
with a perfect fluid, just as the Friedman cosmologies. However, the 
presence of rotation has two major effects3: the space-time metric is not 
parity invariant, and closed timelike lines are present; ie., causality is 
violated. This latter property is commonly associated with rotation (e.g., 
Tipler, 1974). Some questions which arise are: How does the presence of 
closed timellke lines affect the propagation of a quantum field in spacetime? 
What effects does the lack of parity invariance have on the possible states 
for the parity noninvariant neutrino field? However, though the real uni- 
verse undoubtedly possesses some small amount of rotation, closed timelike 
lines are unlikely to be present. Unfortunately, these two effects cannot be 
separated for a simple space-time such as the Grdel universe. 

Section 2 is concerned with the symmetries of the G~del metric, as 
expressed by the Killing vectors. These are used in deriving a new set of 
coordinates for the Grdel metric, with which a major part of the subsequent 
calculations are carried out. Using a variational method, geodesics for the 
Grdel metric are found in Section 3. The absence of closed timelike 
geodesics (i.e., absence of causality violation for an unaccelerated observer) 
is demonstrated, and in Section 4 the presence of closed timelike curves 
(with accelerations) is demonstrated with an example. 

The scalar wave equation is solved in Section 5. This is done in the laew 
coordinates and in G~Sdel's original coordinates. Explicit formulas for the 
eigenmodes and frequencies are given, and the frequency spectrum is 
plotted. In Section 6 the neutrino field is investigated, with similar results. 
The neutrino field is found to possess both continuous and discrete par~s to 
its eigenvalue spectrum, whereas the scalar field has only discrete eigenval- 
ues. 

The problem of formulating a classical field theory is discussed in 
Section 7. In Section 8 the orthogonality and completeness of the mode 
solutions are discussed. Section 9 addresses the problem of quantizing the 
fields. Because of the absence of a complete Cauchy surface in the GtSdel 
universe and the incompleteness of the mode solutions to the scalar and 
neutrino field equations over a three-dimensional surface, second quantiza- 
tion of the scalar and neutrino fields cannot be carried out in the usual 
manner. Section 10 summarizes the results obtained in this investigation. 

Previous work includes that of Hiscock (1978), who has solved the 
scalar wave equation in the GOdel metric and has calculated the eigenvalue 
spectrum, and of Mashoon (1975), who has considered the propagation of 
electromagnetic waves and demonstrated the coupling between the helicity 
of the photon and the rotation of the GiSdel universe. 

3These and other properties are summarized in G~Sdel (1949). 
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2. GROUP STRUCTURE OF THE GODEL UNIVERSE 

In this section, a new set of coordinates is derived for the G6del metric. 
First, the symmetries of the metric are found by solving for the KiUing 
vector fields of the GOdel metric. The commutation relations of the Killing 
vectors are then examined to find the structure coefficients of the symmetry 
group of the Grdel  metric. Linear combinations of the Killing vectors are 
formed to simplify the commutation relations and group structure coeffi- 
cients. A mutually commuting subset of these new Killing vectors is used to 
define a new set of coordinates for the G6del metric. 

We start by using the metric in G6del's original coordinates (Ryan and 
Shepley, 1975): 

ds2 = [dx ° +exp(x')dx2]2-(dx') 2 

--exp( 2x' )( dx2 )2 /2--(  dx3 ) 2 (1) 

An isometry is a transformation which leaves a space-time metric invadant. 
A Killing vector field describes an infinitesimal isometry; i.e., the metric is 
left invariant by sliding the space-time along a Killing vector field. The 
GOdel metric possesses the five Killing vector fields: 

r/~ = (1,0,0,0),  rl]' = (0, 1, -- x2,0) 

r/~ = (0,0, 1,0), ~/~ ----- (0,0,0,  1) 

~l~=(--2exp(--x ' l ,x2,exp(-2x')--(x2)2/2,0) (2) 

These are found by solving Killing's equation: 

(3) 

where Lp is the Lie derivative with respect to the vector p. Equation (3) 
specifies that the derivatives of the metric functions g~ are zero in the 
direction of a Killing vector. 

The Killing vectors of equations (2) satisfy the following commutation 
relations4: 

[,7o,n,l=[n3,n,]=O, i - -  0, 1,2,3,4 (4a) 

[~1, ~4] =~4'  [1~1, 7/2] =72 ,  [~/2,*/4] =*h (4b) 

4For any two vector fields O, o the Lie derivative of o with respect to p is given by 
Lp(o) = [p, ol. 
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If one defines new Killing vectors 5 by 

42 = (~2 '~ ~4 ) /~ - ,  44 = (7~2 - ~ 4 ) / f  ~,  4 =n, (5) 

then the commutation relations (4b) of the subspace spanned by 41, 42, and  
44 have the form 

[4i, 4/] =C~4k (6) 

The Ci~ are the structure constants for the symmetry group of the G/Sdel 
metric. They have the form 

_ _  k C42 = C74 -~- C22 = 1, Cir. = Cji (7) 

others zero. 
These are the same as the structure constants for the Lorentz group of 

space-time rotations (i.e., Lorentz boosts and ordinary rotations) i n  a 
(2+ 1)-dimensional Minkowski space. This is not surprising since the isot- 
ropy group of a point must be a subgroup of the homogeneous Lorentz 
group (Ryan and Shepley, 1975). The isotropy group of a point P is the set 
of isometries which leave P fixed. Transformations which have a fixed point  
are rotations. The only Killing vector of the set (2) which has a fixed point  is 
714, and only at x 2=  0, x I approaches infinity. None of the new Killing 
vectors 4i [equation (5)] has a fixed point. However, one can construct 
rotations with finite fixed points by simple linear combinations of the 
Killing vectors (2). For example, 7/4+2~/0-~ h +3~72/2 vanishes on the 
2-plane x ~ = 0, x 2 = 1. Killing vectors describe only infinitesimal isometries. 
Thus, there is no reason why the path of a point undergoing a macroscopic 
rotation should close to form a circle. In general, a rotational isometry will 
take a point along a corkscrewlike path. The five Killing vectors of equation 
(2) express the entire set of symmetries of the Grdel metric, including 
homogeneity in space and time. Only three of these are simple translations, 
in the coordinates of equation (1). 

According to equation (4), only three of the five Killing vectors 
mutually commute. By choosing three mutually commuting Killing vector 
fields to form coordinate lines, one can obtain metric coefficients which 
depend functionally only on the fourth coordinate. The first three coordi- 
nates correspond to symmetries of the Grdel  universe. 70, 71~, 713 are chosen 
here as the three Killing vectors with which to construct new coordinates. 

5In general, linear combinations of Killing vectors are also Killing vectors only if the 
coefficients are constants. 
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They then have the following form in the new coordinates: 

, ~ :  (1,0,0,0), ~ ' :  (0,1,0,0), ~ :  (0,0,0,1) (8) 

The new coordinates are labeled by 

x ~ : (t,  d?, r, x)  (9) 

so that ~ corresponds to translation along the new coordinate q~, for 
example. 

To find the coordinate transformation of new from old coordinates we 
take 

x 3 = x  (10) 

since they correspond to the same Killing vector [by equations (8) and (2)]. 
Any vector p has components in two coordinate systems, x ~ and ~ ,  related 
by the transformation 

~ = ( d ~ / a x ' ) o "  (1 l)  

With the known forms of ~/0, ~h and ~o, ~/t, one obtains, from equation (11), 

l = dx°/dt ,  O =- dxl /dt ,  O = dx2/dt  (12a) 

0 = dx°/ddp, 1 = dxl/dd?, - x 2 = dx2//dg? (12b) 

This allows one to write the coordinate transformation as 

x ° = t + M ( r ) ,  x ' = e p + h ( r ) ,  x 2 = r e x p [ - e p - h ( r ) ]  (13) 

with M(r )  and h(r)  arbitrary functions. The x z dependence on r has been 
chosen to be r e x p ( - x  l) for simplicity. Since the r coordinate can still 
undergo a scale change, it forms the arbitrary function for x 2 in equation 
(13). One can specify M ( r )  and h(r )  by imposing conditions on the form of 
the metric in the new coordinates. The metric is, from equations (1) and (13) 

a~2 = ( at + M'ar  + [ -  r a ,  + ( 1 -  rh,)ar] } ~ 

- (aq~ + h'dr) z - r2[aep + ( h ' -  1 / r ) d r ] 2 / 2  - (dx) 2 (14) 

with ' =  d/dr .  Choosing M ' =  r h ' - 1  eliminates the cross term in dtdr. 
Furthermore, setting h ' =  r / ( 2 +  r 2) eliminates the d¢ dr cross term. With 
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these simplifications the metric is 

ds 2 = ( d r -  rdeo) 2 - ( 2 +  r2)(dq,): /2 - (dr)2~(2+ r 2 ) - ( d x )  2 (15) 

The metric (15) can be put in a more natural form by transforming the 
r coordinate to 0 by a scale change: 

r = f2s inh0 (16)  

This yields the final form of the new metric 6 which we will use: 

d s 2 = ( d t - ~ s i n h O d e o ) 2 - c o s h 2 0 ( d q ~ ) 2 - ( d O ) 2 - ( d x )  2 (17)  

The coordinate transformation is, in summary 

x ° = t - t a n h e ,  x'=eO--1/(~/2coshO) (18a)  

x2=~/-2sinhOexp(- x ' ) ,  x 3 = x (1-Sb) 

The two Killing vectors other than those specified in equation (8) [i.e., */2 
and *14 of equation (2)] are 

,/~ = e x p ( x ' ) [ l / ( ~ - c o s h '  0 ) , -  sinh 0 / (2  cosh' 0) ,1/(f2-cosh 8 ),0] 

~/~ = e x p ( -  x~)[1/(~/2cosh 0 ), sinh O ( f 2  - 1/(2  cosh 0 ) ) ,  cosh O/f2-,O] 

(19) 

in the new coordinates t, qa, 0, and x. The preceding x ~ is understood to b e  a 
function of q~ and 0, as given in equation (18). 

3. GEODESICS 

In this section we study the geodesics of the GOdel universe. A geodesic 
is a path (either spacelike, timelike, or null) for which the tangent vector U 
to the path obeys U."#Ua=aU ". UTI3UO is the derivative of U in the  
direction of U. Thus, along the path of a geodesic the tangent vector is 
transported parallel to itself. The path is specified by four differentiable 
functions of some parameter. By transforming to a new parameter, one can  

6This form was pointed out to me by W. G. Unruh. 
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always put the geodesic equation in the form U;~U a = 0. Such a parameter 
is referred to as an affine parameter. For timelike (or spacelike) geodesics, 
an affine parameter is proportional to proper time (or distance). Regardless 
of parametrization, timelike and null geodesics correspond to the force-free 
motion of massive and massless particles, respectively. 

A segment of a geodesic (in general, entire geodesics have no end- 
points) is an extremal path between its end points. All geodesic segments, 
and thus all geodesics, can be found by solving the variational problem: 

0= fLa  (2o) 

with s an affine parameter (proper time or distance for timelike or spacelike 
geodesics). The Langrangian L is proportional to the square of the proper 
distance along the curve as a function of the parameter s: 

L = g ,(&./ds)(dxVas) 

Extremizing this can be shown to be equivalent to extremizing the proper 
distance. For the G/3del metric of equation (17), L is given by 

L : ( d t / d s -  f2  sinh 0 d , / d s  ) 2 -  cosh20(d¢/ds)2 

- (do/a )2 - (dx/ax)  (21) 

Lagrange's equations for t, ~, and x (with • = d/ds)  yield the constants of 
the motion: 

A =  i - ~ s i n h O + ,  B =  Yc, C=v/2sinhOA +cosh204 (22) 

Substituting into equation (17) yields (for timelike geodesics) an equa- 
tion for 0(s): 

1 = A  z 0 2 _  2 -- (C-~J2sinhOA) /cosh20 - B 2 (23) 

If one defines the constants D and E and the function y by 

D = A 2 + B 2 + 1, E = 2A2C2/D + A 2 - B 2 - C 2 - 1 (24a) 

y = sinh0 - ~/-2A C /D  (24) 
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then one can rewrite (23) as 

.;2 + Oy = E (25) 

For null geodesics the left-hand side of equation (23) is zero. This results  in 
equations (24) and (25) being valid but with D and E both defined witlaout 
the "1" in them. Differentiation of equation (3.6) with respect to s yields  

2 p ( y  + Dy) = 0 (26) 

Thus, y is either a constant along a geodesic (y  = E/D) or y obeys the 
simple harmonic oscillator equationT: 

y = + (27)  

From equation (22), t and @ satisfy the first-order equations: 

(28a)  

+2C ACy/Z +I+ZA CVO ] (Z8b) 

A, B, and C are arbitrary subject to E > 0 by equation (25). The explicit  
form of any geodesic is given by equations (24), (21), and a direct integra-  
tion s of equation (28) with respect to s. In the case in which y is constant ,  t" 
and + are constants. 

We now demonstrate the absence of closed timelike geodesics 9 in the 
maximal manifold. For constant y, we could regard t or ~ as per iodic  
coordinates to obtain closed timelike geodesics. However, to obtahn a 
maximal manifold, any such periodicities in the coordinates have b e e n  
un .wrapped.~° From the preceding equation (28), for periodic y one has tha t  
0, t, and ~ are periodic. However, t cannot be periodic unless A is zero  by 
equation (28). Equation (24) then gives a negative value for E, which is not  
allowable. Since the preceding variational approach gives all the geodesics, 
this implies that there are no closed timelike geodesics. 

7Consider negative E: no solution to equation (25) exists. Thus, values of A, B, and C wlaich 
result in negative E are not allowed. 

SThe result is rather compficated and is not given here. 
9Chandraseldaar and Wright (1961) have shown that no closed timelike geodesics exist. 
l°Hiscock (1978) uses a periodic coordinate q~ to give an example of a closed timelike curve. 
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4. CLOSED TIMELIKE LINES 

The existence of closed timelike fines is examined in this section. The x 
coordinate can be ignored, so we consider only the three-space with coordi- 
nates t, 0, ~ and metric 

dsZ=(dt -~s inhOdep)Z-coshOE(dq~)2-(dO)  2 (29) 

Ryan and Shepley (1975) give an explicit form for closed timelike curves in 
the coordinates of G6del, i.e., those of equation (1): 

x 0 = A [ s i n ( z ) _ s i n ( z ) c o s ( z ) / 2 ] ,  

x 2 =  -- A sin(z),  x 3 = 0  

x' = -/ cos(z) 

(30) 

The constants A and B need to be chosen properly and z is unbounded. In 
the coordinates here, t, ~, 8, and x, this takes the form 

t = A sin(z) [1 - cos (z ) /2 ]  

- -  {1 + 2 / [A  s i n ( z ) e x p ( -  Boos(z)) ]  } -1/2 

qj= -- Bcos( z ) + [ AZsin2( z )exp[--ZBcos( z ) ] + 2] -1/z  

sinh0 = - A s in(z )exp[ - -  Bcos(z)] /2 ,  x = 0 (3 I) 

The nature of the light cones (for which ds 2 =  0) is examined to 
illustrate the nature of the dosed timefike fines.t~ Write • = d / d X  for some 
suitable affine parameter X. Then one has 

o=i2-2 sir Oi¢+(sinh20-1)¢2-02 (32) 

The infinitesimal fight cones will be described by the surface defined by 
equation (32) in the tangent space. The only variable in equation (32) is 0, 
so one can illustrate the behavior of these surfaces for various 0. This is 
done in Figure 1. The fight cones open up as one moves away from 0 = 0, 
and rotate counterclockwise for increasing 0, clockwise for decreasing O. The 
positive t direction is always inside the forward light cone, and the negative t 
direction is always inside the backward fight cone. At sinhO = 1, the positive 

ttHawking and Ellis (1973) use another set of coordinates to illustrate the light cones, null 
geodesics, and an example of a closed timelike curve. 
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sinhO=O 

sinhO=4 

Fig. 1. Light cones in the GiSdel universe. 
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direction is tangent to the backward light cone, and the negative 
direction is tangent to the forward light cone. For sinh 8 = - 1 the situation 
is reversed. For I sinhO I > l, the ~ direction is inside the double light cone.  

With the light-cone structure established, one can construct a closed 
timelike curve as follows, for example (this is illustrated by Figure 2): 

(1) Move along positive 8 and t in the 8 - t  plane past sinh9 = 1 where 
the edge of the light cone dips below the constant t plane (say, unti l  
sinh O = 4). 

(2) Change direction to negative t (still inside the forward light cone)  
and move in the t -  ~ plane at sirth O = 4. 

(3) At negative ~, large negative t change direction to be in the 0 - ~ ,  
plane and move along negative 0 and 4, until almost at sinhO = 1 ( for  
]s inhO]<l ,  the forward light cone no longer tips below the constant  t 
plane). 

(4) Move along positive t and ~, negative O back to the origin. 
The tangent vector to the previously described path has remained 

inside the forward light cone for the entire closed path, and thus the pa th  is 
a valid closed timelike curve. One can smooth out the comers to get 
reasonable accelerations. However, as we have shown, no closed timelike 
fines exist which are also geodesics. 

As opposed to the case for geodesics, there are no general methods 
which give all the closed timelike lines. They must be found by trial an d  
error. Because of this, we have only given an example of one closed timelike 
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Fig. 2. An  example of  a closed timelike curve in the G~del universe. 

line (clearly, though, there are an infinite number of similar characters to 
the one illustrated in Figure 2). We leave the topic of paths of classical point 
particles and, in the remaining sections, study the behavior of fields in the 
G6del universe, starting with the scalar field. 

5. SCALAR FIELD 

In this section, solutions for the scalar field equation in the G6del 
metric are found. This is done in the coordinates derived in Section 2 and in 
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Grdel's original coordinates of equation (I). In Section 7 the question of 
constructing a classical field theory is addressed. Since the Grdel metric 
possesses no complete spacelike surfaces, which are desired as initial da ta  
surfaces for the fields, one is faced with making an arbitrary choice of 
constant "time" surfaces. Use of two different choices, i.e., two coordinate 
systems, helps illustrate the effect of this arbitrariness. 

For the purposes of finding mode solutions and eigenfrequencies, one 
set of coordinates suffices. Fortuitously, in Grdel coordinates, the number 
of parameters involved can be reduced by one via a mode-dependent 
transformation. As a result, the solutions in this case yield an exact formula 
for the mode frequencies. However, the features of the mode functions and 
frequency spectrum are the same for both sets of coordinates. 

The minimally coupled massless scalar field ~ satisfies the covariant 
Klein-Gordon equation: 

or = 0  (33)  

where the semicolon means covariant derivative and the comma means 
partial derivative, g is the determinant of the matrix of metric coefficients 
g~,~. In the coordinates of equation (17), this becomes 

(1 -- 2 tanh z O)~,oo - 2~/-~ (sinh O/cosh 2 e ) q',o, 

-(1/cosh28)~,,t-~.22-tanh8~,2-~,33=O (34) 

g is -coshZ# in these coordinates. One can define simultaneous eigenmodes 
by exploiting the isometries of the Gt~del metric through the Killing vectors 
7/;. This is achieved by imposing periodicity of the modes along directions 
given by a set of commuting Killing vector fields: 

Ln,~= -iai~, i = 0 , 1 , 3  (35) 

Here Lp stands for the Lie derivative with respect to the vector to. The tt i are 
the momenta of the field ~ in the directions ~/i. In equation (35) we have 
chosen the same Killing vectors and thus the same symmetries of the GSdel 
metric that were used in Section 2. Since three of the coordinates corre- 
spond directly to the Killing vectors used in equation (35), the Lie deriva- 
tives reduce to partial derivatives. One is then led directly to write the 
separated form of the scalar field, equation (37). 
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Separation of variables in equation (34) yields the following equation 
in 0: 

[ ( 2 tanh 2 O - 1 )a 2 + 2 ~/2 (sinh O/cosh 2 O )aoa , + ( 1 / cosh 2 O )a~ + a} ] 

x ? -  - tanhO ?,: = 0 (36) 

with 

~(eti; x ") = exp(-  iaot --ia,ep --ia3x)~(a,; O) (37) 

In terms of the variable y = sirthO, this can be rewritten as 

d/dy[(1 + y2)d~/dy] 

+[ - (a~+a~)+(2a~- -a~- -2~aoeqy) / ( l+  y2)]~=O (38) 

Examination of the singular points of this equation reveals that it is one 
form of the hypergeometric equation. Equation (38) can be rewritten in the 
form 

~ " + 2 y / ( 1  + y 2 )~ '+[ - - k l / ( l+  y 2 ) + ( k 2 - k 3 y ) / ( l +  y2)2] ~ = 0 

(39) 

with ' =  d/dy and 

kl  --  O~o 2 At- otl, k2---  2t~2 - a 2, k3= 2~-aoO q (40 )  

The solution (Morse and Feschbach, 1953) of equation (39) can be written 
in terms of the Riemann symbol as 

} - i  oo y} 
gk = P # t, 

' I~' I/ 
(41) 

with h, h';/~, #'; J,, v' being the indices at the regular singular points at i, 
- i, and infinity, respectively. These pairs are given by the roots of 

X2 = (k 2 _ k3i)/4 ' /~2 = (k 2 + k3i)/4 ' ,2 = kl (42) 
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One can express ~ in terms of the hypergeometric function, which is the 
analytic solution about z = 0 of the hypergeometric equation: 

z ( z - 1 ) F " ( z ) + [ ( a + b + l ) z - c ] F ' ( z ) + a b F ( z ) = O  (43) 

with ' = d/dx .  F can also be written in terms of the Riemann symbol: 

I0,  F ( a , b , c ; z ) = P  0 0 a (44) 
1--c c - - a - b  b 

To put the equation for g?, equation (39), in the form of that for F, equation 
(43), both the dependent and independent variable must be transformed. 
Applying the required transformations, one finds ~ in terms of F: 

~ =  AF(X + t~ + v , l - v -  ?~'-t~t' ,X- X'+ l; (l + iy) /2)  

+ B F ( X ' + t ~ + v , I - v - X - - t L ' , X ' - X  + I ; ( I + i y ) / 2 )  (45) 

with A and B arbitrary constants. This is the general solution of equation 
(39) about the singular point y = i. The general solution about the singular 
point y = - i is 

~= AF(tx + ~ + v,l-u--lx'--  ~',#--Iz'+ l; (1--iy)/2) 

+ BF(tx'+ h + v , l - - v - - i ~ - -  ~',l~'--Ix + l ; ( 1 - - i y ) / 2 )  (46) 

The radius of convergence of both these solutions is 2. The solution about  
the point at infinity is 

= A ( y  + i)~ ' / (y  - i)~'+"F(v + t~ + •, 1 - X - v ' -  I~', 

1, -- v '+  1; 2/(1 + iy)) + B ( y  + i) t~/(y - i) I"+" 

×F(~,'+ lz + h , l - -  X - - v - - t ~ ' , u ' - - v +  l ; 2 / ( l  + iy)) (47) 

From equation (42), v '=  - v is real since k I > 0. Thus, one must have either 
A or B zero in equation (47) (depending on whether one chooses i, or u" to 
be negative) so that q~ does not diverge. Together, the equations (43), (46), 
and (47) allow one to find ~ anywhere in the complex 0 plane, in particular 
for real 0. 
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The general self-adjoint differential equation for the eigenvalue prob- 
lem 12 over an interval of y is 

_ P 

[p(y)e/(y)] + [ q ( y ) +  Xr(y)]  6(Y) = 0 (48) 

with '=d/dy and p(y)r(y) positive over the interval. The eigenvalue 
problem consists of finding all functions in(Y) which solve equation (48) 
and satisfy the boundary conditions, and of finding the eigenvalues X. that 

must take for each of the functions ~n- It can be shown that there are an 
infinite number of eigenvalues, ranging from some minimum value to 
positive infinity (Morse and Feschbach, t953, Chapter 6). One can compare 
equation (38) or (39) with equation (48). One sees that either - k 1 or  + k 2 
can be regarded as the eigenvalue h. The remaining k s act as parameters: 

X = - kl,  r = l ,  k2, k 3 parameters (48a) 

X= +k2, r=l/(l+y2),  k,,  k3 parameters (48b) 

The question of orthogonality and completeness of the eigenfunctions 
is considered here. First we consider only the 0 dependence of the mode 
solutions. Orthogonality and completeness of the eigenfunctions must be 
discussed in terms of an inner product. For the self-adjoint differential 
equation (48) the inner product of two solutions ~l and q~2 is normally 
defined as 

(6,, 62)= fdy6?(y)62(y)r(y) (49a) 

Orthogonality of 6~ and 62 is expressed by (61, 62) = 0. Completeness of the 
eigenfunction set means that the difference between an arbitrary function 
fly) and its expansion gin(Y) in terms of eigenfunctions in(Y) 

gin(y): 2 C&(y) 
n : l  

with C a constants, can be made arbitrarily small; i.e., (f--gin, f--gin) 
approaches 0 as m approaches infinity. For equation (48), completeness 

IZSuitabte boundary conditions must be imposed at the end points of the interval. 
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can be expressed by the relation 

oo 

]~ ~n(y)gk*(y')r(y)=8(y-- y ' )  (49b)  
n = l  

where the sum is over all eigenfunctions. 
The eigenfunctions for cases (48a) or (48b) would form a complete  set 

if the eigenvalue k were free to assume arbitrary values. However, f r o m  
equation (40) one has - - k l = - - ( a ~ + a 2 ) .  Thus, k I cannot take ont all 
eigenvalues required. In fact, since the eigenvalues of equation (48) r ange  
from some minimum value to positive infinity, - k ~  takes on only a f ini te  
subset of the infinite range of eigenvalues, k 2 can yield all eigenvalues above  
-- a 2 by varying 13 a 0. If the minimum eigenvalue for given a I and a 3 is less 
than - a  2, k 2 cannot take on the first few eigenvalues. However, b o t h  
choices (48a) and (48b) must lead to the same results for the full s e t  of 
solutions for q, and the associated allowable values for a 0, al, and a 3. La t e r  
we will find it advantageous to use the choice equation (48a). 

We first consider the case (48b) with k 2 as eigenvalue. For the self- 
adjoint differential equation (39), the eigenfunctions can be shown t o  be 
orthogonal (suitably normalized): 

fdy~(a,,a3,k2,Y)~*(al,a3,k'2,y)/(l+ yZ)=8k~.k, (50a)  

or in terms of 0: 

fdO2o(, ,, ki, O)/coshO = 8k2,k i (50b) 

If, in addition, k 2 takes on all possible eigenvalues in the spectrum of the 
self-adjoint differential operator (with boundary conditions), one has the 
completeness relation: 

~(a. ,a3 ,k2 ,y)~*(al ,a3 ,kE,y ' ) / ( l+y 2) = 8 ( y - y ' )  (5 la) 
k2 

or in terms of 0: 

~,, ~(~q, et 3 , k 2, O ) ~ * ( c h ,  a3, k 2 , 0 ' ) / c o s h 0  = 8 ( 0  - -  O') (5 ]b )  
k2 

~3Take a I and a 3 as free parameters. Then a o is determined by the required eigenvalues of k 2. 
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For the choice that - k l is eigenvalue, equation (48a), the orthogonal- 
ity relation is 

(52a) 

In terms of 0 this becomes: 

- k, ,  - e l ,  O)coshO : ~k, .kl  (52b) 

If - k~ could take on all eigenvalues, then the completeness relation would 
be 

"~(al ,aa,-k, ,y)~o*(oq,a3,-k, ,y ')=d(y-y'  ) (53a) 
kl 

or in terms of 0 

~)(Otl,Ot3,-kl,O)~*(Oll,O~3,-kl,Ot)coshO--~(O-O' ) (53b)  
kl 

To determine the character of the eigenvalue spectrum, consider the 
form of equation (36) as 0 approaches infinity: 

d26/dO 2 ± dd?/dO - k ,6  = O, 0 ~ +_ oo (54) 

This has asymptotic solutions: 

~ = A e x p [ - ( a + l / 2 ) O ] +  B e x p [ ( c t - 1 / 2 ) O ] ,  0---, +oo 

~ = C e x p [ - - ( a - - 1 / 2 ) O ] + D e x p [ ( o ~ + l / 2 ) O ] ,  0 ~  - - ~  (55) 

with a =  + ( 1 / / 4 + k l )  1/2. In equations (55) C andD are functions of the 
arbitrary constants A and B, found by solving the fuU equation (39). When 
the boundary conditions are applied, one requires B and C to be zero [see 
also equation (47)] since one has a~> 1/2 for aU values of a 0 and oq. This 
will occur for only isolated values of the constants - -  k l ,  k2 ,  and k 3 so that 
the eigenvalue spectrum is discrete. 

It turns out that the mode solutions and eigenvalue spectrum are 
expressed more neatly by using the original coordinates of G0del, equation 
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(1). 14 Substi tuting for g~" and g [ =  - e x p ( 2 x l ) / 2 ] ,  one obtains  the pa_rtial 
differential  equat ion 

~,0o + #',ll +# ' , l  +~,33 -4exp(--xl)~,oz + 2 e x p ( - Z x l ) q ' , 2 2  = 0 (56) 

To  separate  variables in equat ion (56) we write ~ as 

= f ( x  l ) e x p [ i ( k z  x2 + k3x 3 - wx°)]  (57) 

Then  f satisfies 

d2f/( dxl) 2 + d f / d x ' - ( w  + +4exp(-  1)wk2 

+ 2k22exp( -  2x  l ) ) f  = 0 (58)  

For  k 2 = 0 we can write f as 

f ( x ' )  = A e x p ( p x  1) (59)  

Then  p must  satisfy 

p Z + p - ( w Z + k 2 ) = O  or p=- (1 /2 )+- (w2+k2+l /4 )  1/2 

F o r f  to converge for  - ~ < x 1 < + ~ ,  p must  vanish, i.e., 

w = k 3 = 0 (60)  

when k 2 = 0. 
For  k 2 nonzero define the variable z by 

z = 2¢2[k2 [ e x p ( -  x I ) (61)  

This  is not  a t ransformat ion  to new coordinates since k 2 depends on the 
m o d e  under  considerat ion [see equat ion (57)]. In terms of z the e q u a t i o n  
(58) for  f becomes  

d2f/dz2+[--1/4-V/-2mw/z-(w2+k~)/zZ]f=O (62)  

with m defined by  m = k2/Ik21 = -- 1. By performing the t r a n s f o r m a t i o n  of 

14The solution of the scalar field equation in Grders coordinates has also been considered by 
Hiscock (1978), with similar results. 
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variables we have reduced the number of parameters from 3 to 2 (k 2 no 
longer appears). The equation (62) has a regular singularity at z = 0 and an 
irregular singularity at infinity. We put equation (62) in the form given in 
the Appendix by equation (A.1). The values of k, a, X, and ~' are then given 
by 

k = 1/2,  a = - mw/f2 

~ .=l /2+(w2+kJ+l /4 )  1/2, X ' = l / 2 - ( w Z + k ~ + l / 4 )  '/2 (63) 

Since we have X' ~< 0, convergent solutions are (see Appendix) 

with 

f ( z )  = d exp( -- kz) zXF(a, c, 2 kz ) 

c=l+ h -X '= l+ 2(w2  +k2 + l/4) 1/2 

a = c / 2 -  et/k = c/2+ v/2rnw 

(64) 

where a =  - n ,  n =0 ,  1,2 . . . .  When a is a negative integer, the confluent 
hypergeometric function F reduces to the generalized Laguerre polynomials 
L~ c- l)(2kz) (Abramnowitz and Stegun, 1964)15: 

F ( -  n, c,2kz ) = n !L~ c- t)(2kz ) / (  c). (66) 

The eigenfrequencies are calculated from equation (65): - n  =c/2  
+ ¢2mw. Inverting this formula results in an expression for w: 

w = - m { ¢ ' 2 ( n + l f 2 ) + [ ( n + l / 2 ) 2 + k ~ + l / 4 ]  1/2} (67) 

With the definition of m in equation (62) we conclude the following: 
(A) w > 0 for k 2 < 0 and w < 0 for k 2 > 0. With equation (57) this 

implies that positive frequency ( w > 0 )  waves travel in the negative x 2 
direction and negative frequency waves travel in the positive x 2 direction. 

(B) One has I wnl >¢)-,  equality for n = 0, k 3 = 0. Thus there is a 
minimum frequency for scalar waves in the G~Sdel universe unless the field 
does not depend on x 2 (i.e., k 2 is zero). However, in this latter case w and k 3 
are also zero, so no wave solution exists. 

ISSee equation (A.3b) for the definition of (c).. 

(65) 
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(C) For fixed k3, w is discrete. This is equivalent to the statement made 
earlier for the scalar field solutions using the coordinates of equation (17). 

(D) There is a straightforward generalization to the massive or confor- 
mally invariant cases. The field equation then takes the form 

g~'"#;~,. + A0 = 0 (68) 

with A = m 2 for a scalar field of mass m, or A = R / 6  for the conformally 
invariant scalar field. For the Gt~del metric equation (1), the Ricci scalar R 
has the value R = + 1. With the additional term in equation (68), equation 
(56) is modified by + A~ on the left-hand side. This has the effect of 
replacing w 2 + k~ by w 2 + k~ + A in formulas (58) through (67). The 
minimum frequency is now larger: [w[ > (1 /2 f / z  + ( 1 / 2 +  A) l/z instead of 
(B) above. This reduces to [ w[ > v~- for A = 0. 

With an explicit formula for the eigenfrequencies w, we plot the 
spectrum or dispersion relation in Figure 3. The w versus k 3 curves are 
rectangular hyperbolas. This is best seen by rewriting equation (67) as 

[ w +  mf2(n  + 1 / 2 ) ] 2 - k ~ = ( n +  1/2) 2 + 1/4 (69) 

The asymptotes of the hyperbolas are centered in the w, k 3 plane at 
(k3, w)=  [ 0 , -  mv~(n + 1/2)]. The point on each hyperbola closest to the 
k 3 axis is given by 

w(k3 = 0) = - m {  V~-(n + 1 /2 )+  [(n + 1/2)2+ 1/4] '/2} 

~ -m(vI-2 + l ) (n+  l /2)  

Equation (62) is in the self-adjoint form of equation (48), and we have 
imposed regular boundary condition at z = 0 and z approaches infinity. 
Thus we can address the question of completeness of the solutions (64). The 
explicit form of these solutions is given by 

f (  z ) = A e x p ( -  z /2)z  ~'+ 'L~')( z ) (70) 

with 

/~ = (w: + k~ + 1/4) '/2 

These functions can be shown to be orthogonal but incomplete under the 
inner product (f ,  g ) =  f f (z)g*(z)r(z)dz as follows. Consider the equation 
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<.'o / n=2 n= 1 

n--O 

k 2 < O  

k 2 =0 ~ 

), k 3 

" ~  k2>O 

n=2 -i=0 

Fig. 3. Spectrum for the scalar field in the G6del universe. 

(62) for f with - w as the eigenvalue and, by equation (48), 

r( z ) = + f2m/z  = exp(x ' ) / ( 2  k 2 ) (71) 

as the weighting function, w2 +  k32 =/.L 2 - 1 / 4  is then the parameter which 
one holds constant)  6 For each value of/~2 _ 1 /4  one can solve equation (62) 

ZeOne can vary k 3 freely so long as we are considering the z dependence independently of the 
x 3 dependence. 
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for the eigenfunctions f and the eigenvalues w. Thus orthogonafity o f  the 
eigenfunctions holds: 

f ¢*lx' k k 3 , w ) f ( x ' , k z , k 3 , w ' ) r ( z ) d z = l A [  2 (72) J \  , 2 ,  

However, I wl has an upper bound: 0 <w2</~  2 -  1/4. This demon-  
strates incompleteness for the set of solutions f since a complete set would 
have - w ranging to infinity. 

In the next section we consider the solutions to the neutrino field 
equations in the GOdel universe. 

6. THE NEUTRINO FIELD 

The neutrino field equations are solved in two sets of coordinates. The 
motivation again is to help understand the problems of constructing a field 
theory, discussed in the next section. 

The generalized Dirac equation for curved space-time is (Brill and 
Wheeler, 1957) 

- i~k ~Tk~b + m~ = 0 (73) 

where ~7 k = O k -- F k is the covariant spinor derivative. The spin connections 
are given by 

i j ' " F k = - ( 1 / 4 ) ( [ i ,  kj] + Cikj)(y  "t -- ~'J ' t ' ) /2 (74) 

The [i, kj] are the Christoffel symbols of the first kind t7 and the Cikj are 
defined by 

Oky i = Cj~,),J (75) 

To satisfy the anticommutation relations 

~[i.~j _~_ ]l j i l l  ~__ 2 giJ 

the ~, matrices are chosen to have the form 

~,o = ~7o + 2  tanh0~71 , ~t2 = -~ 2 

2t I = ?l/coshO, 3, 3 = ,-73 

(76) 

(77) 

t7See equation (97), or any standard text on relativity, e.g., Anderson (1967). 
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The ~7~ are the flat space Dirac matrices: 

1 a i 
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~i) (78) 

From the preceding equations one obtains the following expressions for the 
spin connections Fk: 

ro = 9172 /2~ ,  

F 2 = - 9o9 ' /2~- ,  

can 

F i = cosh 0~7°92/2f2 

F 3 = 0 (79) 

For the solutions of the Dirac equation (73), simultaneous eigenmodes 
be defined by imposing periodicity of the modes along a set of 

commuting Killing vector fields: 

Ln,~b = -- ia?p, i = 0, 1,3 (80) 

The Killing vectors are given by equation (8), in the coordinates of equation 
(9). For the neutrino field one has, in addition to setting m = 0 in the above, 
the restriction to left-handedness: 

( 1 - i 7 5 ) ~ = 0  with , 5 = ( 0 i  0 )  (81) 

(1-  i~t 5) is the operator which projects out the right-handed component of 
the wave function ~k- The neutrino field in this case simplifies to a two- 
component wave function: 

With equations (77), (79), and (80), the Dirac equation for neutrinos 
separates in the coordinates of the metric (17). This yields the following 
equation in 0: 

[(37o + v@tanh 0.17 1 ) ( _  iao) + ~l(_ ial)/CoshO + .~2d/dO 

+ )t3(--ia3)+y°'/l~2/2f2 +tanhO~2/2]~(a~,O)=O (83) 

To obtain equation (83) the neutrino field ~b has been written in the form, 
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with separated variables, 

6((xi, x ~') = exp(-  iaot -iale p - ia3x )~/( ai, O) 

l,eahy 

(84) 

This was possible because of the relation between the three Killing vectors 
used in equation (80) and the coordinates t, q,, and x. 

One then obtains coupled equations for the component functions o f  the 
neutrino field, ~l and ~2: 

+ 

+(a3+f2/4-ao)~,=O (85a) 

+ (a3 + f2" /4 -  a0)~2 = 0 (85b) 

These are equivalent to the second-order differential equations: 

d26,/dO ~ +tanhOd6,/dO 

+ {,,o~- (,~ + ~/4)2 + (1/cose o) 

×'[1/2+sinh2(O/4)-(a,+~aosinh20 )2+-(a, sinhO -~/2Oto)] )~  i = 0, 

+ : i = 1 ,  - - : i = 2  (86) 

In terms of the variable y = sinh0, equation (86) takes the form 

(d/dy)[(1 + y2 )d~,/dy] 

+ { - - [ ( a  3 + ~-/4)2 + a2-- 1/41 

+ [2a~ -- a~ + 1/4-----¢r2ao - y(27r2aoa, +--a,)1/(1 + y2)}~i = O, 

+ : i = 2 ,  - - : i =1  (87) 
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This is written in self-adjoint form for comparison with the general self- 
adjoint differential equation, given in equation (48). 

One can compare equation (87) with the corresponding equation for 
the scalar field case, equation (38). The differences are due to the coupling 
of the neutrino spin to the metric, as expressed by the presence of the spin 
connection in the Dirac equation. Equations (87) can be written in the same 
form as equation (39), but with the k~ given by 

I 2 
kl = a 2  + (a3  + ~ f 2 )  -¼  kz=2a2-et2+¼+-f2Cto 

k3=2f2aoal+-al, + : i = 2 ,  - : i = 1  (88) 

The discussion regarding writing ~i in terms of the hypergeometric 
function and on orthogonality and completeness of the eigenfunctions from 
equation (39) to equation (53) applies also to the neutrino field, with 
equation (40) replaced by equation (88). One cannot keep k I and k 3 fixed if 
k 2 is chosen as eigenvalue without changing ao, al, and a 3. If - k I is chosen 
as eigenvalue, the discussion of completeness of the neutrino field mode 
solutions on a three-dimensional surface in the G6del universe is meaning- 
ful, as discussed in Section 8. Again, as with the scalar field, the allowable 
solutions form a set of measure zero in the complete set of solutions. There 
are now two differential equations and two sets of eigenfunctions related by 
the first-order equations (85). 

To determine the nature of the eigenvalue spectrum, we consider the 
form of the asymptotic solutions. However, the boundary conditions must 
be dealt with differently than for the scalar field case. The neutrino field is a 
spinor, whereas we require a true scalar quantity, which is independent of 
any spinor basis. The spinor basis may diverge or vanish at infinity, so that 
the vanishing or divergence of the spinor field components may be due 
merely to poor choice of basis. The scalar quantities ~Pq,~bX~ are required to 
be finite. ~ =  Lk+'~ ° is the Dirac adjoint. X~ is an orthonormal tetrad 18 
(i = 0, 1,2, 3) parallel transported to infinity along 0-coordinate lines accord- 
ing to 

dX /a  + r  (dxO/a )X  = 0 (89) 

with x a = (A, B, 0, C); A, B, C constants. F~t ~ is the connection for the 

18A tetrad is a set of four vector fields which relate the coordinates to a locally inertial frame at 
each point. See, e.g., Weinberg (1972). 
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metric.19 The tetrad is chosen so that at O = 0 it has the components 

X, ~ = 8~ at e = 0 (90) 

The solution to equation (89) with the condition (90) yields the tetrad for all 
0 as 

X~ = (cosh( O / f 2 ) -  ¢r2-tanh 0 sinh(0/f2-) , -s inh(  0/~/2 )/cosh O, 0, 0 )  

X~= ( - s i n h ( O / ~ - )  + ~/2tanh 0 cosh(O/f2) ,-cosh(g/~/~)/coshO,O,O) 

= ( 0 , 0 ,  

X~ = (0,0,0, 1) (91) 

The corresponding scalar quantities of interest are 

~p)kO = cosh(e/f'2) ( (~1 + ~¢4'2)+ s inh(e / f2)  (~4,2 + ~¢~,) 

- .~  ~y~pX l =  - s inh(e/~-)  (~,r~, + ~2 2 ) -  cosh( O / ~  )(~T~2 + ~'e~, ) 

(92) 

These are required to be finite as O approaches plus or minus infinity. 
The asymptotic form of the equations for ~l and ~2, equations (85a) 

and (85b), give the values of q~l and ~2 as 0 approaches infinity. The 
requirement of finiteness of the scalars in equation (92) for all values of 8 is 
equivalent to 

exp( ± 2 finite as O ~ ± oo, respectively (93) 

The asymptotic forms of the solutions to equation (87), or equivalently to 
equation (39), are given, with the appropriate ki, by equation (57). This 
gives the requirement 

B = 0  and C - 0  for a>(1-1/V~)/2 (94) 

19In a space-time without torsion, such as we consider here, the connections reduce to tlae 
Christoffel symbols of the second kind. These are given by, e.g., Anderson (1967). 
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with a =  +(1/4+klf/2. This will be the case for only isolated values of 
- k  I (with k2, k 3 fixed). However, for a ~< (1 - 1/v~-)/2 no such restriction 
is implied by equation (93). Thus the spectrum of eigenvalues for  k z is 
continuous for 0 ~< a ~< (1 - 1/¢~-)/2 and discrete for a > (1 - 1/¢~-)/2.  

Again, as with the scalar field, solution of the neutrino field equations 
in G6del's coordinates, equation (1), gives heater results (i.e., explicit mode 
frequencies) than in the coordinates of equation (17). The Dirac equation is 
given by equations (73)-(76). In G/Sdel coordinates we can take 

y 0 = 9 0 _ f 2 - ? 2 ,  ~ , ,=? , ,  72=f~exp(_x,)5,2, 7 3 = ?  3 (95) 

where -7 i are the flat space Dirac matrices given by equation (78). With these 
./i, one calculates the Cj~ as 

C22z = - 1 all others zero (96a) 

or, equivalently, one finds for the Cqk 

C02 , = - e x p ( x ' ) ,  C22 , = - - exp (2x l ) / 2  others zero (96b) 

The Christoffel symbols [i, kj] will be given here explicitly for illustration. 
They are given by derivatives of the metric functions g~: 

[ i, k j]  = ( dgik / /dx  j At- dgi j / /dx  k - dgk j / / dx i ) / / 2  (97) 

giving 

[1,021 = - [2,01] = - [0, 121 = - e x p ( x ' ) / 2  

[1,22] = -- [2, 12] = -- exp (2x l ) /2  all others zero (98) 

Then one can calculate the spin connections F k to be given by 

ro=?' 92 q, r l = o ,  F2=exp(xl)qT'92/4v~ -, 1"3=0 (99) 

For neutrinos one has the condition on the allowed helicity, equation 
(81). Thus one can write ~ as in equation (82). The neutrino equation is now 
written out explicitly. Since x °, x 2, and x 3 do not appear explicitly, we 
directly separate variables: 

= exp[i(a: x  + wx°)] Z, i=1,2 (lOO) 
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The neutrino equation then separates to give first-order coupled equations 
for fz and fz: 

- i (w-k3-Vr2 /4)f, +[d/dxl +¼+{-2(w+k2exp(-x'))]f2=O 

(101) 

--i(w+ k 3 + ~/2/4) f: +[d/dx' + ¼ - ~  (w+ k 2 e x p ( -  xl))]  f, = 0 

These combine to give the second-order differential equations 

d2f / / (dx l )  2 J r l d f i / d x l A t  - ( w 2 - (  k 3 + !/r2-/4) z 

+ 6-2[w+k2exp(-x')]2+- g2exp(-x')}Z=O (102) 

with + for fl and - for f2. 
For the case k 2 = 0 we can write f = exp(px l) since the coefficients in 

the differential equation (102) are independent of x ~. Then p satisfies the 
relation 

p =  - 1 / 4 - - - [ w  z -~-(k 3 -t- ¢r2/4)21 ' '2  (103) 

with fl, f2 proportional to exp(p+ x l), exp(p_ x l). The solutions diverge as 
x I approaches plus infinity or minus infinity unless p is zero. This occurs 
over a narrow range of w and k3: 

2 
w2+(k3+g/4)  = 1 / 1 6  for k2 = 0 (104) 

Contrast this with the scalar field case, equation (62), where the k 2 = 0 case 
gives no wave solution. This is in accord with the discussions based on the 
solutions in the t, cO, O, x coordinates. There, a continuous spectrum for 
low-frequency modes [after equation (94)] was found for the neutrino field 
but not for the scalar field. One finds from equation (101) the ratio off1 and 

f,=if2(vr2w+¼)/(w-k3-f2/4)=const (105) 

For k 2 nonzero define the variable z by 

z= lk2lexp(- x ~) (106) 
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This differs from the scalar field z, equation (63), by a factor of 2v~. The 
relations between the x I and z derivatives are given by 

d/dx '  = -- zd/dz, d2/( dx,)2 = z2d2 /dz 2 + zd/dz (I07) 

Equation (102) in terms of z becomes 

z 2 d Z f i / d z 2 + ( z / 2 ) d f / d z + [ - 2 z 2 + m ( f 2 s - 4 w ) z + a ] f - - O  (108) 

w i t h a = l / 1 6 - w 2 - ( k 3 + v ~ / 4 ) 2 ;  s =  + f o r f l , s =  - for f2. 
Equation (108) is put in the standard form for a second-order linear 

differential equation with one regular and one irregular singular pointm: 

d2f/dz z + p( z )df dz + q( z ) f = 0 (109) 

with 

p = ( 1 - - ~ - - ~ ' ) / z ,  q= - k 2 + 2 a / z + X ~ ' / z  2 

Comparison of equation (109) with equation (108) yields the values of k, h, 
h', anda :  

~ = ¼ + [ w  2 + ( k  3 +f2/4)z]  '/2 

~ '=  ¼ - [ w  2 + ( k  3 + ~-/4)2] '/2 

k 2 = 2  

and 

2 a = m ( f 2 s - 4 w )  (110) 

The general solution of equation (109) about z = 0 is given by 

f =  A exp( -  kz )zXr( (1 + 7~ -- • ' ) / 2 -  a /  k, 1 + X -- X',Zkz ) 

+ Bexp( -kz ) zX 'F( (1 -X  + 7 ~ ' ) / 2 - o t / k , l - X  + X',2kz) (111) 

F(a, c, z) is the confluent hypergeometric function [see equation (A.3)]. 

2°See Appendix; also Morse and Fesehbach (1953), pp. 550 ft. 
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Requiring convergence of the scalars ~3,~p~'~ is equivalent to conver- 
gence of f~ and f2 for 0 <  z < ~z. The arguments are similar to those 
presented for the solutions in t, q~, 0, x coordinates which resulted i n  the 
requirement equation (93) for qh and ~2. 

For z approaching zero, A and B can be nonzero in equation (1 11) 
without destroying convergence if ?x'> 0 [see equation (A.5a)]. Convergence 
of f in equation (111) for z approaching infinity, additionally, results i n  the 
requirements 2~ 

B=O:a/k=n+½+[w z + ( k  3 +f2/4)2] '/z (1 12a) 

for ~' > 0 or ~' ~< 0 

A=O:a/k=n+ l/2-[w2+(k3 +¢-2 /4)2] 1/2 (1 12b) 

for ~ ' > 0 .  The Appendix demonstrates why both alternatives result  in 
convergence for ?~'> 0, whereas only equation (112a) results in convergence 
for X'~<0. a and k are given by equations (l12a), (l12b), and (110). This  
yields the possible frequencies of convergent solutions f~ and f2: 

with 

w=[s--2m(n + 1/2)1/¢2" + m {  [s--2m(n + 1/2)12 /4  

- f o r X ' > 0  or X'~<0 [case( l l2a) ]  
+ for M >  0 [case (112b)] (1 13) 

We consider the case of the minus sign in equation (113) first, which 
holds for all ~'. For the case k 2 > 0 (m = -1 ) ,  the frequencies for f~ a nd  f2 
are given by 

w =  - - ( ~ n , + [ n l  2 + ( k 3 + f 2 / 4 ) 2 ]  I/2} f o r f  l 

w= --{f2(n2+l)+[(n2+l)2+(k3+¢2/4)2] 1/2} for f2 

(1 14) 

211 -- 2~' + ;k v ~ -- m is identically satisfied and for ?~' > 0, 1 + ~ ' -  h v a - m also always holds. 
See also equations (A.6). 
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For k 2 < 0 (m = - 1), one has 

w=f2(n,  + 1)+ [(n, + 1)2 + (k3 + ~- /4)2]  '/2 for fl 

w=¢2n 2 +[n~  + ( k  3 +~/4)2]  1/z f o r f  z (115) 

Here n I and n 2 are the integers required in equations (112) for the 
convergence off l  and f2, respectively. There is no a priori reason why n I and 
n 2 should be the same. 

Since any solution pair fl, fz have the same frequencies w, k2, and k3, 
equations (114) and (I 15) imply the relation 

n I = n 2 + m (116) 

m is the sign of k z, as before. The preceding relation is derived in the 
Appendix together with the relation between fl and f2. 

The case M > 0  allows the other sign in equation (113). However, 
together with equation (116), one can show that the minimum frequency in 
equation (113) violates the condition X' > 0; i.e., [ w I ~in = v~- - 1 gives kma ~ 
= 1 / 4 - I w l m ~  < o. Thus, only A is nonzero in equation (111) for all w, k2, 
and k 3. 

The explicit form of the z eigenfunctions can now be given: 

fl(z) = A, exp(-2z)zXL~,- ' ) (4z)  

fz(z) = A 2 e x p ( -  2z)zXL~ -')(4z) (117) 

The ratio of A l and A 2 is given in equations (A.13); ~ is given by equation 
(110), and c by 

The neutrino field q, is then given by equations (82) and (100), with z given 
by equation (106) and w by equation (114) or equation (115), depending on 
m, the sign of k 3. 

To further examine the dispersion relations, equations (114) and (115), 
we cast them in the form 

(w+m¢-2n)2-(k3+¢2/4)2=n2, n = 1 , 2 , 3 . . .  (118) 
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This is a rectangular hyperbola with asymptotes given by 

w+mv/2n = --+(k3 + ~/2/4) (119) 

The "center" (crossing point of the asymptotes) has coordinates (k3, w ) =  
( - ¢ ~ - / 4 , - m q ~ n ) ,  which shift progressively away from the k 3 axis as n 
increases. The dispersion relation, or spectrum, is plotted in Figures 4a and 
4b. Equations (114) and (115) include only the branch of the hyperbola 
directed away from the k 3 axis. These are the ?~'< 0 modes. The h ' >  0 

\ 
\ 

\ \ / / '  
"y, 

, , ' \  

4 / 

/ 

A 

co 

i /  

m = ~ l  

n l = 0  
n 2 =  1 

\ 

i/> ,, k 3 

m = + l  
n I =1  
n2=  0 

Fig. 4. (a) Spectrum for the neutrino field in the G6del universe: near the k3,w origin, 
illustrating lack of h' > 0 modes. 
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Fig. 4. (b) Spectrum for the neutrino field in the GOdel universe: large-scale features. 

modes are excluded as argued in leading up to equation (117). This is 
indicated in Figure 4a by the branches of the hyperbolas in dotted lines. The 
hyperbolas for w versus k 3 have asymptotes which recede from the k 3 axis 
as - rnf2n, but the closest point on each hyperbola recedes as - m(¢~ + 1)n. 
This is seen directly from equation (119) with k 3 + ¢ ~ / 4  = 0. Also shown in 
Figure 4 are the k 2 = 0 modes. This is the circle near the origin of the 
(k3, w) plane. 

We now summarize the main results obtained via the solution of the 
neutrino field equations in the x °, x ~, x 2, x 3 coordinates. 
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(A) One has w > 0 for k 2 < 0 and w < 0 for k 22> 0, so that positive 
frequency waves travel in the negative x 2 direction and vice versa. "This 
result was also found for the scalar field. 

(B) There is a minimum frequency for neutrino waves (with k 2 v a O) in 
the Gt~del universe: Iw] > 1 + ~ ' .  

(C) For fixed k3, w is discrete, except for neutrino waves with n o  x 2 
dependence (k 2 = 0). 

One can show that the solutions fl and f2 do not form a complete set 
for functions of z in the interval 0 to infinity. To address the question of 
completeness we write equation (109) in the self-adjoint form [with p ( z ) =  
1/2z]: 

( d/dz )(  '/2dx/az )+ z'/2q( 0 (120) 

with 

q ( z ) =  - -2+2a/z+a/z  2 

a and a are given by equations (108) and (110). In equation (120) we take a, 
or equivalently w, as the eigenvalue for fixed values of the parameter a. But 
by equation (108) for a, one has 

w2 <l/16--a 

With this restriction, for any given value of a, w has an upper limit. This  is 
contrary to the requirement for a complete set of eigenfunctions, i.e., tha t  
the eigenvalue range to plus infinity. We see thus that the eigenfunctions of 
equation (117) do not form a complete set. This is in agreement with the 
results found for the functions 'Pi [discussed after equation (88)]. 

7. CONSTRUCTION OF A FIELD THEORY IN THE GODEL 
METRIC 

Now we wish to consider the question of constructing a field theory for 
the scalar and neutrino fields in the GOdel metric. There are two parts to the 
approach followed here. First, the classical field theory is considered. This  
includes primarily a discussion of the initial-value problem in the G r d e l  
metric. Secondly, the quantization of the fields is briefly discussed. This  is 
not considered in detail owing to the problems encountered with construct- 
ing a classical field theory. 

So far we have found sets of mode solutions to the scalar and neutrino 
field equations (Sections 5 and 6, respectively). The equations were sep- 
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arated and solved in both the G6del (x° ,x  z, x 2, x 3) coordinates and the 
new coordinates (t, q~, 0, x) constructed in Section 2. The equations for the 8 
and x I (or z) dependence were put into self-adjoint form and solved. For 
both neutrino and scalar fields the &dependent functions (or z-dependent 
functions) were found to be incomplete as a basic set for expanding 
arbitrary functions of 0 (or z). Completeness is defined in terms of an inner 
product, as was described in the discussion following equations (48a) and 
(48b). 

We need to consider the solutions of the scalar and neutrino equations 
over the whole of the Gtdel  space-time. There exists an abstract vector 
space which includes all functions in the Gtdel  universe which are solutions 
of the scalar field equation (and a separate space for all solutions of the 
neutrino field equation). The two sets of coordinates, (x °, x 1, x 2, x 3) and 
(t, ep, O, x), cover the entire Gtdel  space-time, so the vector spaces for 
solutions in either set of coordinates are the same. The mode solutions 
found here [e.g., ~ of equation (37) or of equation (57), for the scalar field] 
form a basis for a vector space of solutions (in this case, for the scalar field 
equation). Does the space spanned by the mode solutions encompass all 
solutions to the field equation? This can be restated in the form: can any 
solution be expanded in terms of the mode solutions? An inner product is 
required to decide when two functions are equal, as described earlier. 

Normally, the preceding question regarding completeness has a 
straightforward affirmative answer. This situation occurs when the Cauchy 
initial-value problem is well defined in a space-time. It is not for the Gtdel  
universe. The Cauchy problem is well defined when a space-time can be 
foliated into a set of complete spacelike surfaces (conventionally labeled as 
constant t surfaces). The field equation (here we consider the massless scalar 
field as an example) t-q~, = 0  is separated into an operator ~,2 on the 
spacelike surfaces and an operator d2/dt  2 for the time dependence. Writing 

proportional to exp ( -  iwt), the spatial equation is 

V 2 ~ + w 2 ~ = O  (121) 

This is Helmholtz's equation, and the solutions to this (for all w 2) form a 
complete set for expanding all functions on the spacelike surface, x7 2 here is 
symbolic for the covariant Laplace operator. The covariant operator is used 
so that the surfaces can have any curvature as long as they remain spacelike. 
The statement about completeness also implies that any function on a 
spacelike surface forms a valid set of initial data for a solution to the field 
equation. 

The inner product under which the solutions to the field equations 
form a complete set is defined by an integral of the conserved current J~' 
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over a spacelike surface: 

(61,62) -= ( i / 2 ) f d E  (-  g),/2 jr (122) 

This inner product is particularly useful since it is conserved; i.e., the inner 
product of two solutions does not depend on which surface is considered in 
equation (122). For the scalar field, the current operator j r  is 

(123a) 

For the neutrino field (this holds also for the massive Dirac field) the 
current is given by 

= (123b) 

Applied to the scalar field case, the inner product, equation (122), becomes 

~l,~2)=(i/2) ft=constd3x(-g)'/2g°~'[(O~,~)~2-~(3~,~2)] (124) 

What alternate inner products exist? One can use 

(6,, = f rr62(- g) '/2d3x 025) 

This is a generalization from the inner product used for one variable, 
equation (49a). The inner product in equation (125) is not conserved. 
Another possibility, perhaps useful when the Cauchy problem is not well 
defined, is 

f ~ 2 ( -  g) I/2d4x 

The mode solutions are then not a complete basis, since any function 
(including all which do not satisfy the field equations), over the full 
space-time can be considered. However, if the space is Euclideanized (i.e., t 
goes to it), then the solutions to the massive scalar field equation: rq~ + 
m2~ = 0 for all values of m form a complete set. Compare this with equation 
(121); the Euclideanized [] is now a Laplace operator. The question of what  
forms a valid and useful inner product for the space of solutions has not  
received enough attention in the past. It deserves much more attention, bu t  
only a brief discussion is given here. 
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What can go wrong with the standard classical field theory? A simple 
example involving an incorrect choice of surface for defining the inner 
product (122) is now given. Consider the massive scalar field in flat space 
with coordinates (t, x, y, z). Define the inner product as in equation (124) 
but over z = const surfaces. The mode solutions are given by 

exp( -- iwt + ikxx + ikyy + ikzz ) (126a) 

with 

2 2 2 2 w - k  x - k y  k ~ - m  2=0 (126b) 

According to equation (126b), the k ' s  can have any value, whereas w is 
restricted to Iwl > m. Thus, on a constant t surface, the modes (126a) form a 
complete set of functions of x, y, and z. But on a constant z surface, the 
modes (126a) are incomplete for functions of t, x, and y owing to lack of the 
low-frequency e x p ( -  iwt) functions. This problem arises because a constant 
z surface is not spacelike; this is responsible for the plus sign of w 2 
occurring in equation (126b). 

In the Grdel  metric there are no complete spacelike surfaces, so the 
problems of the last paragraph are expected to occur. In Sections 5 and 6, 
the incompleteness of the mode solutions for the 0 (or the x ~) dependence 
was demonstrated for both scalar and neutrino fields. This is easily ex- 
tended to incompleteness over constant t (or x °) surfaces under either inner 
product equation (124) or (125) for the scalar field or equation (122) 
for the neutrino field. It was shown that the mode solutions form a set of 
measure zero in the total set of basic functions on a constant t (or x ~) 
surface. This is in contrast to the incompleteness of the modes (126a) over a 
constant z surface in fiat space for which only a few basic functions (those 
for Iwl < m )  were missing. 

The modes (126a) still form a complete basis for all solutions to the 
scalar field equation for mass m in flat space. For the GOdel metric, we do 
not know whether the mode solutions form a complete basis for the 
solutions of the field equation (either scalar or neutrino). This question is 
one which should be looked into, but is not considered here. Another  
question, not addressed here either, is whether the mode solutions in the 
coordinates (t, ~, 0, x)  span the same vector space as those in the coordi- 
nates (x °, x 1, x z , x3). 

The next section discusses the lack of completeness of the mode 
solutions over three-dimensional surfaces in the GOdel metric. If the Cauchy 
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problem were well defined for the GOdel universe, completeness would be 
essential. Since it is not, completeness in the standard sense is not expected 
to hold. 

8. O R T H O G O N A L I T Y  AND C O M P L E T E N E S S  OF T H E  
M O D E  S O L U T I O N S  

Here we consider orthogonality and completeness of the full four-  
dimensional, dependent mode solutions for the scalar field, equation (37). 
The discussion is dependent on the choice of an inner product for the 
solutions to the scalar field equation. The lack of completeness is not  
surprising in light of what has been said in Section 7. 

The scalar field modes in (t, ~, 0, x)  coordinates are examined first.  
They are given by equation (37), with ~(0)  given by equations (45), (46), or 
(47) for the appropriate values of y=sinhO. We first consider k 2 as 
eigenvalue [alternative (48b)] for the 0 (o ry)  equation. In this case k I a n d  k 3 
are parameters. The relation between the k ' s  and the a ' s ,  equation (40), 
shows that k 2 cannot be varied freely (as it must be to " f ind"  its eigenvalues 
for fixed k I and k3) without changing a o or a I. In turn, constant k 3 implies 
that both a 0 and al change. Constant k I means that a 3 also changes. Th i s  is 
unsatisfactory since to discuss completeness we need to have al and a 3 f ixed 
so that the completeness in the variables 0 and x is undisturbed [see 
equation (37)]. The t dependence is not of concern since we can define the 
inner product in the standard manner as over a t = const surface, as in 
equation (124) or equation (125). We seek completeness over a constant  t 
surface in order to decompose any initial data into field modes. The G~de l  
metric presents an additional problem here since a constant t surface is no t  
spacelike everywhere nor do there exist any complete spacelike surfaces. 

The other choice of - k I as eigenvalue is now considered. With - k I as 
eigenvalue and k 2, k 3 fixed parameters for equation (39), the relations (40) 
leave only one choice, a 0 and al must be fixed and a 3 allowed to vary to 
change - k p  For consistency with completeness defined for an inner  
product  on a set of three-dimensional surfaces in the Grde l  metric (recall 
there are no complete spacelike surfaces available), one must take x = cons t  
as these surfaces. Then variation of - k ~  (and a3) does not disturb the  
completeness in t and ~ variables. This unusual situation in which ot 3 takes  
on the status of energy (normally one would give s 0 this role) and x the  
status of a pseudo-time-coordinate is forced on us and is a result of the  
rotation of the Gt~del universe. 
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For  the full four-dimensional  space-time we then generalize the relat ion 
(52b) to obtain, for orthogonality,  zz 

f u0 at dq~ e x p [ -  idp(a t - a ] ) -  i x (  ot 3 - e t ' 3 ) -  i t ( a  o - eg o )] 

× ~ ( a o ,  a l , - - k z ,  -* ' ' ' 0 ) c o s h 0  0),~ (~0,al,-k~, 
• ~ 

= e x p [ - - t x ( a  3 -- a3)] ~. , , .  i t~31,1,%16~o,,~k~,k~ (127) 

If  --  k I would cover the full range of  eigenvalues, the completeness relat ion 

Y~ ~(~0, ~,, - ~ ,  0)~*(~o, ~ , , -  k~, 0') 
o r 0 ,  O t l ,  k l  

× e x p [ -  i ~ 0 ( t  - c ) -  i ~ , ( ~  - ~ ' ) ]  = 8 ( 0  - o ' ) ~ ( t  - r ) ~ ( ~  - * 3  

(128) 

would be valid. Since completeness is defined on constant  x surfaces, x --= x '  
is required and implied in equation (127). As mentioned previously, - k  I 
will not  take on all eigenvalues for any values of  a 0 or  a t. Thus,  the 
completeness relation, equation (128), will not  hold. 

One can determine the missing eigenfunctions which prevent the solu- 
tions to the scalar field equation from forming a complete set. We use 
- k I [alternative (48a)] as eigenvalue to discuss the missing eigenfunctions.  
In this case we had defined an inner product  over constant  x surfaces 
instead of  constant  t surfaces and treated a 3 as the " f requency"  of  our  
solutions to be quantized. Then, by equation (40), k I varies as a3 z with k 2 

and k 3 fixed [as well as the t and q, dependence through a 0 and  a I in 
equation (37)]. There are missing eigenfunctions since - k  z has a possible 
range of minus infinity to - a o  2, whereas the eigenvalues required range 
f rom a min imum value to plus infinity. We see that the high-frequency 
[ e x p ( - i a 3 x ) ,  a 3 large] solutions are the ones that are missing. This  is a 
strange result since x is the ignorable coordinate in the Gt~del metric.  We 
note also here that for fixed k 2 and k 3, - k~ takes on only a finite number  
of  the infinite range of  eigenvalues. Thus, t h e  set of allowed solutions of  the 
scalar wave equation is of measure zero in the complete set of eigenfunc-  
tions. 

2 2  ._~ t The ~1~31, I a5[ is present, but redundant since (a o,/11, - -  k t) = (a~, a~, - k t) implies a 3 = -- a 3. 
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The arguments for the eigenmode solutions in (t, q~, 0, x) coordin~ates 
for the neutrino field equation parallel this. The counterpart of equat ion  
(127) has 81~3+0/2)v~r,la~+0/2)v~ I instead of 81~31 ,laSI on the right-hand side. 
This is due to the difference between equation (40) and equation (88) f o r  k l 
(orthogonality of the ~ and t-dependent parts of q: gives k I = k{ a nd  
% = ,%). 

One can define an inner product in a way similar to the s tandard  
manner by an integral of the conserved current J~ over a constant t surface. 
This surface is not spacelike everywhere, in particular for [sinh0[ > 1. O n e  
writes the inner product as in equation (124). The inner product (124) is 
different from that in equation (127) or its counterpart for k s as eigenvalue 
which arise from equation (49a). Under this inner product one can show 
that the eigenmodes of equation (37) with different %,  ~l, or a 3 are 
orthogonal: 

(eO(ao,a,,a3;x~'),~(a'o,et~,a'3;x~'))=8.o,a.oa,,t,,~a.,,.; (129) 

needs a different normalization than for the other inner product, equat ion 
(49a). Here the values of a 2 are dictated by the eigenvalues for - kl, giving 
two possible signs: a 3 --- - ( k  I - a02) 1/2. 

We demonstrate here, explicitly, the orthogonality of the mode solu- 
tions to the scalar field equation in the coordinates (x°,xl,  x2, x3). In 
Section 5 we found all solutions to the scalar field equation which are 
regular for x z approaching plus or minus infinity (z approaching p lus  
infinity or zero). From equations (57) and (70) the scalar field modes have  
the form 

~(x~,w, k2,k3) = Aexp[i(k2 x2 + k3 x 3 -  wx°)] exp( - z/2)z~'+'L~')( z )  

with 

z=2~[-2lk21exp(--xl), / ~ = ( w  2 + k  2 + 1 / 4 )  '/2 (130) 

and w given by equation (67). 
The orthogonality of the f (x  I) eigenfunctions is given by equation (72). 

Orthogonality of the normal modes of equation (130) is then easily demon-  
strated to hold: 

" ~, , ' w,)r(z)a3x f ~*(x',  k2, k3, w)q~(x , k2, k3, 

= (Err) 21AI  aw,w,a(k  - k' )a(k3 - k ; )  (131) 
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In equation (131) the weighting function r is given by 

r(z)=-~-2m/z=-mexp(xl)/21k21:-(-g)~/2(~/2k2) (132) 

This is directly proportional to ( -  g)l/2, so that orthogonality of the scalar 
field modes is assured under the inner product of equation (125). 

We now define an alternate inner product by equation (124),. with the 
integration taken over a constant x ° surface. The j0  component of the 
current operator applied to two normal modes, equation (123a), gives 

J°(~l ,~z)=[-i(w+w')-2exp(-x ' ) i (kz+k'2)]~2 (133) 

Thus, the integral in equation (124) becomes 

( 6 , ,  ~> = fexp(x 1 ) dx I dx 2 dx3/ 

× [(w + w')/2 + 2 exp(-- x ' ) (k  2 + k I ) /2]  6~'62 

= ( 2 ~ ) 2 ~ ( ~ 2  - k ~ ) 8 ( ~ 3  - ~ ; ) f e x p ( x ' )  &' 

X [(w+ w')/2+ aexp(- x')k2] f*(xt,w, kz,k3) 

Xf(xl,wt, k2,k3) (134) 

However, from the differential equation for f,  equation (58), one has 

exp ( -  x')(d/dx')[exp(x l ) d f / d x  1] 

= [ w  2 + k 2 +4exp(--  x')wk 2 +2k~exp(- 2x')] f (135) 

From equation (135) one obtains the following relation: 

f~(x ' ,  w', k2, k 3 ) (d /dx ' ) [exp(x '  )dr2 ( x', w, ks, k 3 ) /dx'] 

-/dd/dx')[exp(x')d:~/d~'] 

= [ w  ' 2 -  w 2 + 4 e x p ( -  x')k2(w'-w)]f~f2exp(x 1) 

(136) 
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The left-hand side of equation (136) vanishes upon integrating by parts and 
applying boundary conditions. Thus, the right-hand side must vanish when 
integrated. But this is just the integrand of equation (134) times w ' -  w. This 
means that for w' e a w, the right-hand side of (134) must vanish. 

~ 

Thus with proper normalization for 4, the inner product, equation 
(124), has the form 

( 6 , , 6 2 ) = 3 ( k z - k l ) 3 ( k 3 - k ; ) 8 ~ , ~ ,  

for ~l and ~2 normal modes. The discrete Kronecker delta in w is used sDnce 
the w's are discrete, corresponding to different values of n in equation (67). 
The orthogonality of the neutrino modes can be shown similarly with inner 
product given by equations (122) and (123b). 

9. QUANTIZATION OF THE SCALAR AND NEUTRINO FIELDS 

Here a brief discussion will be given on the quantization of a field in 
general. Then the problems associated with attempting to quantize in the 
Grdel universe are mentioned. As pointed out in Section 7, even classical 
field theory in the Grdel universe has its problems, so what is said here 
regarding the quantized field is rather incomplete. 

The quantized field is represented by the field operator. The field 
operator can be expanded as a sum of positive frequency modes times 
annihilation operators plus negative frequency modes times creation opera- 
tors. 23 The annihilation and creation operators satisfy commutation rela- 
tions for the scalar field [see equation (142)] or anticommutation relations 
for the neutrino field. 

The momentum canonically conjugate to the field operator q~ is defined 
via the Langrangian L: 

= , r / * (  aO/at  ) (137) 

For the scalar field the conjugate momentum is 

Ir = ( -  g ) , /2gO~,~. (138) 

and for the neutrino field one has 

~r = i(-- g)l/2q~37°'t° (139) 

23More details are given in Bjorken and Drell (1965). 
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The canonical commutation or anticommutation relations take the form, on 
a constant time surface, in analogy with the classical Poisson brackets: 

[ ~ (x " ) ,  ~(x'~')]-,- = i 6 3 ( x "  - -  x " ' ) ,  t = t '  (140) 

In equation (140) the - or + subscript indicates use of the commutator for 
the scalar field or anticommutator for the neutrino field, respectively. 

The preceding procedure can be shown to be consistent, i.e., starting 
with the field operator expansion [e.g., equation (141)] and the commutation 
relations for the operators [equation (142)], the left-hand side of equation 
(140) is calculated to be i ( - g )  1/2 times the sum over positive frequency 
modes (label these by n) of w,,[~,,(x~')~*(x~")+~*~(xJ')~,,(x~")]. This re- 
duces, by the completeness relation for eigenfunctions, to the right-hand 
side of equation (140). The reverse procedure of deriving the commutation 
relations of the annihilation and creation operators from the field operator 
expansion and equation (140) is also valid. 

We now consider quantization of the scalar field in the Grdel metric. 
Quantum field theory, in its present form, for any space-time has been 
based on time evolution of the field from one complete spacelike surface to 
another, i.e., the Cauchy initial-value problem. We wish to write the field 
operator in terms of positive and negative frequency modes times annihila- 
tion and creation operators, respectively. Since the GOdel universe does not 
have a foliation into complete spacelike surfaces on which to base a time 
evolution, we are forced to other means in defining positive and negative 
frequency. The following discussion is based on the solutions in 
(x °, x ~, x 2, x 3) coordinates, since that is more straightforward. 

For the scalar field operator gg, one can make the expansion 

+ b+(kz,k3,w,~)~*(k2,k3,w.; x ' ) ]  (141) 

in terms of the mode solutions of Section 5 to the scalar field equation. 
These are explicitly given by equation (130). Equation (141) is the expansion 
for the charged scalar field, rather than for the neutral scalar field which 
would have a rather than b in the second line above. "b"-type and "a"- type 
particles carry a scalar charge of opposite sign (see, e.g., Bjorken and Drell, 
1965), but this is not essential to the discussion here. The creation and 
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annihilation operators satisfy the commutation relations 

[a(k2,  k3, w.), a + (k~, k ; ,  w,~)] = 8(k 2 - k~)8(k 3 - k~)Sw...,, " 

[b(k2, k3, w.), b + (k~, k~, w')] = 8(k 2 - k'2)8(k 3 - k '  3)8,.., ~; 
(142) 

All other commutators vanish. 
The following inner products (with w, > 0) yield the annihilation and 

creation operators: 

< 6( k 2, k 3, w.; x~ ), #9( x~ )> = a( k2, k3, w~) 

<~*( k2, k3, w.; x~'),#~( x~')> = b+(k2, k3, w~) (143) 

The field operator obeys the commutation relation 

[#~(x~'),.(x')]=--if dk2dka~[w,,exp(xl) /~/-2+f2k2] 
k2 < 0  n 

k3, wo; w.; x.') 

+  (k2, k3, w., k3, w.; (144) 

where ~" is defined by equation (138). However, the failure of completeness 
for the mode solutions to the scalar field equation in the Grdel  metric 
prevents the field commutator (144) from reducing to a delta function as  in 
equation (140). Note that the factor on the first line of equation (144), i.e., 
w, exp(xl)+2k2,  is identical to that appearing in equation (134) (setting 
w = w' and k 2 = k~) for the inner product. Thus, equation (144) contains 
the correct weighting function, and only the lack of a complete set of modes, 
as previously demonstrated, prevents equation (144) from reducing to 
equation (140). 

The field operator commutator, equation (140), expresses the indepen- 
dence of any two points on a spacelike surface (one can choose constant  
time surfaces in any consistent fashion by change of coordinates); i.e., the 
fields at x ~' and x ~' commute for x ~' :~ x ~'. This is equivalent to freedom in 
specifying initial data arbitrarily on a Cauchy surface. We do not have this 
freedom for the GOdel universe. How is this related to the presence of 
closed timelike lines? 
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One can construct the following function for the scalar wave equation: 

H(x~';x~')= fk dk2dk32~(k2,k3,w.,x ~) 
2 > 0  n 

× ~*(k2,k3,w,,x~')exp(xl)/2k2 (145) 

This function is based on the modes of Section 5 in terms o f  the 
(x°,xl, x2, x J) coordinates. From an arbitrary function f(x~), one  can 
construct a solution to the scalar field equation: 

dp(x ~') = fx o = const dXl dx2 dx3 f ( x ~ ) H ( x ~ ;  x ~') (146) 

For  x ° = x  °', H is not equal to ~3(x/~-x ~t) due to the failure of the 
completeness relation, equation (49b), to hold. In this case we are using the 
inner product of equation (125). r(z) is given by exp(xl)/2k2 from equa- 
tion (71). Thus, ~(x  ~) is not, in general, equal to f(x ~) even on the initial 
data x ° =  const surface. The closed timelike lines may be thought of as 
linking any x ° = const surface with itself. Any initial data must be self-con- 
sistent with the field propagated along the closed timelike lines back to the 
initial data surface. The absence of a global Cauchy surface for the G0del 
universe is directly related to the phenomenon of closed timelike lines. 

The discussion regarding neutrino fields in this respect is analogous. 
The analogous H function can be used to demonstrate the lack of freedom 
of choice of initial data on a constant x ° surface. The neutrino mode 
solutions can be shown to be orthogonal under an inner product based on 
the spinor current ~3 ,~ .  In addition, the "equal time" (i.e., x ° = x  °') 
anticommutator of the neutrino field operators at x ~ and x ~' fails to give a 
delta function in x ~ and x ~', in analogy to the scalar field case, equation 
(144). Again, this is due to the incompleteness of the mode solutions over a 
three-dimensional surface. 

10. SUMMARY AND DISCUSSION 

An investigation of the neutrino and scalar fields in the G/3del universe 
has been carried out. The question of the symmetries of the GiSdel universe 
was addressed first and was utiliTed to construct new coordinates (t, 4, 0, x). 
The geodesics were found and the behavior of light cones examined to 
illustrate the nature of the closed timelike lines in the G0del universe. 
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The massless scalar and neutrino field equations were solved next. The 
mode functions and eigenfrequencies were found. Positive frequency waves 
travel in the negative x 2 direction and negative frequency waves in the 
positive x 2 direction for both scalar and neutrino fields. 

The massless scalar and neutrino fields are found to possess quantJzed 
(discrete) energy and momenta. For the modes in (t, ~, O, x) coordinates, 
these are (a0, al, - kl, a3). One can regard a 3 as a function of a 0, a l, and 
- k~, this function being the dispersion relation (cf. w 2 = k 2 + ky 2 + k ff for 
plane waves in flat space-time). The discreteness or quantization of - k~ is 
associated with a potential in the 0 direction. The functional relation giving 
the quantization depends on the solution of the hypergeometric equation 
(39) subject to the proper boundary conditions, with k i given by equation 
(40) for the scalar field and by equation (88) for the neutrino field. 

The modes in (x °, x l, X 2, X 3) coordinates were expressed in terms of 
generalized Laguerre polynomials by equation (130) for the scalar field and 
equations (82), (100), and (117) for the neutrino field. The eigenfrequencies 
were found explicitly as given by equation (67) for the scalar modes and 
equations (114) and (115) for the neutrino modes, in both cases for k 2 :e a 0. 
For k 2 = 0, equations (60) and (104) give the frequencies. 

One might expect this discreteness of frequency purely from a consider- 
ation of the geodesics for a classical particle: the motion in y [ =  sirth0 
-¢~AC/D, defined by equation (24b)] is that of a particle in a simple 
harmonic oscillator potential [see equation (25)]. The discreteness would 
thus occur for the momentum corresponding to the coordinate of the 
periodic motion. 

An unusual result is found for the neutrino field in the low-energy, 
long-wavelength region [i.e., for a~<(1-1 /v~- ) /2 ,  a =  ( 1 / 4 +  kl)|/21. The 
spin gravitation coupling effect becomes large enough to overcome the 
effective potential. The continuous allowable range of energy and momenta  
characteristic of an unbound particle is regained. 

The neutrino is not invariant under the parity transformation (inver- 
sion of spatial coordinates), whereas the scalar particle is. One would expect 
any effects due to lack of inversion symmetry in the Grdel universe to show 
up in the neutrino wave functions. Inversion of ~ and x coordinates is 
equivalent to the change in the wave function: 

a I to - a I , a 3 to - o t  3 

The change of 0 to - 0 is then determined by the differential equation (39) 
using the preceding relation. For the scalar field, one finds from the 
relations (40) that k~, k 2, and k3y are unchanged, so that the wave function 
is invariant under parity. However, the relations (88) show that k I and k3y 
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change for the neutrino case so that the neutrino field is not invariant. 
Neither is the neutrino current invariant: J~' = ~'f~k (~ being the Dirac 
adjoint: i f=  ~+ ~7 °) since the change in '~i is not merely one of phase. 

The solutions to the field equations (either scalar or neutrino) do not 
form a complete set over a three-dimensional surface in the Grdel metric. 
This is connected with the problem of constructing a field theory in a 
space-time for which the Cauchy initial-value techniques are inapplicable. 
More work is required, but it is not clear whether it makes sense to 
construct a field theory in such a space-time, without drastically altering the 
standard procedure. 

Despite the foregoing problems, a preliminary discussion of quantizing 
such a field was given. The purpose of this was to point out the major 
shortcomings of the approach used. The interpretation of quantum mecha- 
nics in a universe with closed timelike lines has its problems, over and above 
the problems associated with causality violation in a classical space-time 
(which include the failure of Cauchy techniques). They are clearly an area of 
great interest, but it is believed that such a discussion is beyond the scope of 

The second quantization procedure here is, of necessity, incomplete. A 
field operator expression [equation (141)] and commutation relations [equa- 
tions (142)] for the annihilation and creation operators were defined in the 
usual manner. This led to the commutator (144) for the field operator at x ~' 
and its conjugate momentum at x ~, which differs from the usual delta 
function result, equation (140), because of the incompleteness of the mode 
solutions to the scalar and neutrino field equations. The incompleteness, the 
lack of a complete Cauchy surface, and the presence of closed timelike lines 
all stem from the presence of rotation globally in the G6del universe. 

One suspects that standard quantum theory may not make much sense 
in a space-time which violates causality such as the GOdel universe. The 
causality violation which occurs in a classical space-time might be always 
removed by quantum effects. For example, it has been shown that the inner 
horizon of the charged black hole is unstable (Matzner, Zamorano, and 
Sandberg, 1979 and references therein). Perturbations in a test field outside 
the black hole result in infinite energy densities at the inner horizon, 
strongly indicating that it would be disrupted. The inner horizon is responsi- 
ble for the causality-violating effects for the charged (and also for the 
rotating) black hole. 
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APPENDIX: SOME PROPERTIES OF THE CONFLUENT 
HYPERGEOMETRIC FUNCTION 

In this Appendix, features of the confluent hypergeometric function are 
used in calculating some results needed for the solution of the scalar and 
neutrino fields in the G6del metric. 

Here we wish to consider the solution of the standard differeaatial 
equation with one regular singular point at z -- 0 and one irregular singular 
point at infinity. We write the equation in the form 

d2 f /dz  2 + p ( z ) d f / d z  + q ( z ) f =  0 ( A . 1 )  

with 

p = ( 1 - ) ~ - ) ~ ' ) / z  and q =  - k V  + 2 a / z +  )~h' /z  2 

The general solution of equation (A.1) about z = 0 is given by 

f (  z ) = A e x p ( -  kz )zXF( (1 + )~ - )~ ' ) /2-  a / k ,  1 + )~ - )~',2kz ) 

+ Bexp(-- kz)zX'F((1 - h + )~')/2-- a / k ,  1 - )~ + X ' ,2kz )  (A.2)  

F(a, c, z)  is the solution of the confluent hypergeometric equation which is 
regular about z = 0. The standard form of the confluent hypergeometric 
equation is 

zdZF/dz  z + ( c -  z ) dF /dz  - aF = 0 (A..3a) 

The solution F is given by 

oo 

F ( a , c , z ) =  ~, ( a ) , , z " / ( ( c ) n n ! )  (A_3b) 
n = 0  

with (x)n defined by (x)n = x ( x  + 1)--.  (x + n - 1),(x)0 = 1. The confluent 
hypergeometric function has the limits as z approaches zero or infinity 

F(a,c,O)=l, c@ --n (n = 0 , 1 , 2 . . . )  

F(a, c, z )  ---, exp(z)za-CF(c)/F(a) for z --, oo 

(A.4)  

F(x) is the gamma function (see, e.g., Abramnowitz and Stegun, 1964). 
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The solution of equation (A.1) then is found to have the limits 

f (  z ) --, Az x + Bz x', z ---, 0 (A.5a) 

f(z) - - ,  A exp(kz)z -('-x-x')/2-"/kr(1 + X - x ' ) / r ( (1  + x - x ' ) / 2 -  a/k) 

+ Bexp(~ )z -" -~ -~ ' ) / 2 -" /kr (X-  X + X')/ 

x r ( ( 1 -  x + x ' ) / 2 -  a/k), z ---, o o  (A.5b) 

The gamma function F(x)  has simple poles at the negative integers x = - n 
(n = 0, 1,2...). 

As z approaches zero [equation (A.5a)],f(z) will converge for any 
values of A and B if X and 2~' are greater than or equal to 0. However, if 
either X or X' is negative, the corresponding constant, A or B, must vanish. 
For convergence as z approaches infinity, first consider the case when h and 
h' are both greater than or equal to 0. Then one can have convergence if the 
gamma function in the denominator of equation (A.5b) has a pole (and the 
gamma function in the numerator does not). The two possibilities are 

A = 0  and ( 1 - h + X ' ) / 2 - a / k = - n ,  1 - X + X ' : ~ - m  (A.6a) 

B = 0  and ( l + X - X ' ) 1 2 - a / k = - n ,  I + X - X ' ~ - m  (A.6b) 

If only one of h or X' is negative, say X', then one requires B = 0 for 
convergence as z approaches 0, so only the second possibility, equation 
(A.6b), is possible. 

The next item we consider is obtaining the relation between the 
functionsfl and f2 which describe the neutrino field through equations (100) 
and (82). The differential equations for ft and f2 were given in equation 
(108), and the general solution to equation (108) was given in equation 
(111). For X' < 0, according to equation (112a), one has 

f / =  Aiexp(-- kz)zXF(ai, c,2kz), i =  1,2 (A.7) 

fl and f2 differ only in A and a. The z derivative of fl, f2 is given by 

df ldz  = Aiexp(-- kz)zX[(-  k + X / z ) F  i + dF~/dz] (A.8) 

We wish to use the first-order coupled differential equations for f~ and f2 to 
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derive the relation equation (116). The first-order coupled equations, equa- 
tions (101), in the variable z are given by 

- i [ w - ( k  3 + 7r2/4)] f, +[- zd /d z  + 1 /4+  f2-(w + mz)]f2=O 
(A.9) 

--i[w + (  k 3 + f}-//4)] f2 +[- zd /d z  + 1/ /4- f2(w+mz)]f ,=O 

With the relation (A.8), these become 

i( A1/A2)[w--( k3 +Vc2//4)]F1 

= -z[dF2/dz +(X/z-k)F2]+[1/4+~/2(w+rnz)]F z 

= - z d F 2 / d z - [ 2 t - 1 / 4 - f 2 w ) - ~ / 2 ( m + l ) z ] F  2 (A.lOa) 

i (A2/A.)[w+(k 3 + ~- /4 ) ]  F 2 

= -z[dFI/dz +(Tt /z-k)F,]+[1/4- fC2(w+ mz)]F I 

=-zdF,/dz-[(2t--1/4+f-2wl+~/2(m+l)z]F,  (A.lOb) 

The confluent hypergeometric function satisfies the identities (Abramnowitz 
and Stegun, 1964) 

(c -- a)F(a -- 1, c, 2kz) = (c - a -2kz)F(a,  c,2kz)+ zdF(a, c,2kz)/dz 

(A.1 la) 

aF(a+l,c,2kz)=aF(a,c,2kz)+zdF(a,c,2kz)/dz (A.1 lb)  

a and c are the arguments of F as given by equations (I 11) and (110). For  
k 2 > 0  ( m =  +1), equations (A.10a) and (A.11b), as well as equations 
(A.10b) and (A.I la), are identified with each other. For k 2 < 0 (m = -- 1), 
equations (A.10a) and (A.1 la), (A.10b) and (A.1 lb) are identified as being 
the same in form. This results in the following relations between a and c and  
the parameters of equation (110): 

m =  +1:  c - a = ( l + 2 t - X ' ) / 2 + a / k = X + l / 4 + s / 2 - g r 2 w  

a =2t + 1 / 4 - s / Z + f 2 w  ( a .  12) 

m= - l : c - a = h + l / 4 - s / Z + f f f w ,  a=7~+l/4+s/Z-v/2w 
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With this identification, the ratio A I / A  2 for the solutions fl and  f2 of  
equation (A.1) can be found. This ratio is derived using the preceding  
identification of equations (A.10) and (A.11) for m = + I or m = - 1, and 
yields 

A 2 / A l = i ( ~ - l / 4 + f 2 w ) / [ w + ( k 3  + f 2 / 4 ) ] ,  

A , / A 2 = i i h - 1 / 4 - - ~ w ) / [ w - - ( k 3  + f2 - /4 )  ],  

m = + l  

m =  - 1  

(A.13) 

Finally, directly f rom equations (A.12) one obtains the result relat ing the 
arguments  of  the f~ and f2 functions: 

a I = a  z + 1  for m = --1 
(A.14) 

a l = a 2 - - 1  f o r m =  + 1  

The  convergence requirement on the functions fl and f2 for z approach ing  
infinity [see equat ion (A.5b)] mean t  that the argument  a of the conf luent  
hypergeometr ic  function had to be  a negative integer: a = -  n. Thus,  
equat ion (A. 14) yields the desired relation between the quan tum number s  n~ 
and n 2 for  the fl and f2 solutions: 

n l = n 2 + m ,  n l , n 2 = O ,  1 ,2 . . .  (A.15) 
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